[1]
Mark Berry, Nick Schott, Process Monitoring and Process Control: An Overview, Applied Plastics Engineering Handbook. 29 (2011) 359-373.
DOI: 10.1016/b978-1-4377-3514-7.10020-0
Google Scholar
[2]
A. Simoglou, E.B. Martin A.J. Morris, Fault detection, identification and diagnosis using CUSUM based PCA, Control Eng. Practice. 8 (2000) 893-909.
Google Scholar
[3]
D. S. Kim, C. K. Yoo, Calibration prediction and process monitoring model based on factor analysis for incomplete process, Journal of Chemical Engineering of Japan. 38 (2005), 1025-1034.
DOI: 10.1252/jcej.38.1025
Google Scholar
[4]
M.G. Zhang, Z.H. Song, LPMVP algorithm and its application to fault detection, Acta Automatica Sinica. 35(2009) 766-772.
DOI: 10.3724/sp.j.1004.2009.00766
Google Scholar
[5]
Q. Chen, R.J. Wynne, The application of principal component analysis and kernel density estimation to enhance process monitoring, Control Engineering Practice. 8 (2000) 531 -543.
DOI: 10.1016/s0967-0661(99)00191-4
Google Scholar
[6]
M. Kano, S. Tanaka, S. Hasebe et al. Combined multivariate statistical process control, IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM). 1(2004) 303-308.
Google Scholar
[7]
Z.Q. Ge, Z.H. Song. Process monitoring based on independent component analysis- principal component analysis (ICA-PCA) and similarity factors, Industrial & Engineering Chemistry Research. 46 (2007) 2054- (2063).
DOI: 10.1021/ie061083g
Google Scholar
[8]
L. Jaeshin, K. Bokyoung, K. Suk-Ho, Integrating independent component analysis and local outlier factor for plant-wide process monitoring, J. Process Control. 21(2011) 1011-1021.
DOI: 10.1016/j.jprocont.2011.06.004
Google Scholar
[9]
Y.W. Zhang, S. Li, Y.D. Teng, Dynamic processes monitoring using recursive kernel principal component analysis, Chemical Engineering Science. 72 (2012) 78-86.
DOI: 10.1016/j.ces.2011.12.026
Google Scholar
[10]
Y. Yao, F. R. Gao, Subspace Identification for Two-Dimensional Dynamic Batch Process Statistical Monitoring, Chemical Engineering Science. 63 (2008) 3411-3418.
DOI: 10.1016/j.ces.2008.04.007
Google Scholar
[11]
A. Simoglou, E.B. Martin, Statistical performance monitoring of dynamic multivariate processes using state space modeling, Computers and Chemical Engineering. 26 (2002) 909-920.
DOI: 10.1016/s0098-1354(02)00012-1
Google Scholar
[12]
D. Lieftucht, U. Kruger, L. Xie et al. Statistical monitoring of dynamic multivariate processes-part 2. identifying fault magnitude and signature, Industrial & Engineering Chemistry Research. 45 (2006) 1677-1688.
DOI: 10.1021/ie060017b
Google Scholar
[13]
S. George, A.B. Hamza, Dynamic independent component analysis approach for fault detection and diagnosis, Expert Systems with Applications. 37 (2010) 8606-8617.
DOI: 10.1016/j.eswa.2010.06.101
Google Scholar
[14]
P.P. Odiowei, Y. Cao, State-space independent component analysis for nonlinear dynamic process monitoring, Chemometrics and Intelligent Laboratory Systems. 103 (2010) 59-65.
DOI: 10.1016/j.chemolab.2010.05.014
Google Scholar
[15]
B. R. Bakshi, Multiscale PCA with applications to multivariate statistical process monitoring, AIChE Journal. 44 (1998) 1596-1610.
DOI: 10.1002/aic.690440712
Google Scholar
[16]
A. Hyvarinen, P. Hoyer, Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces, Neural Computation. 12 (2000) 1705-1720.
DOI: 10.1162/089976600300015312
Google Scholar
[17]
X. Pan, Q. Q. Ruan, Palmprint recognition with improved two-dimensional locality preserving projections, Image and Vision Computing. 26 (2008) 1261-1268.
DOI: 10.1016/j.imavis.2008.03.001
Google Scholar