Finite Element Simulation of Aluminum ECAP Material Flow

Article Preview

Abstract:

To enhancing strength and toughness of metals, severe plastic deformation (SPD) grain refinement was a typical method. As one of the SPD method, equal channel angular pressing is an effective method in fabricating ultra-fine grain metallic materials. In this paper, the rigid-plastic finite element method was used to analyze the aluminum alloy ECAP processing, to reveal the material flow character and its effect on microstructure evolution. The simulation results were agreed with plastic mechanics and experiment well, and it was shown that distribution of maximum principal stress was not uniform, material located at the front-end of sample flow easily and material located at the top of die channel corner flow difficultly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-270

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] KOCH C C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals[J]. Scripta Materialia, 2003, 49(7): 657-662.

DOI: 10.1016/s1359-6462(03)00394-4

Google Scholar

[2] VALIEV R Z, KOZLOV E V, IVANOV Y F et al. Deformation behaviour of ultra-fine-grained copper[J]. Acta Metallurgica et Materialia, 1994, 42(7): 2467-2475.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[3] Wang. J, Iwahashi. Y, Horita . Z, M. Furukawa, et al. An investigation of microstructural stability in an Al Mg alloy with submicrometer grain size[J]. Acta Materialia. 1996, Vol. 44: 2973-2982.

DOI: 10.1016/1359-6454(95)00395-9

Google Scholar

[4] Tamás Ungár, Levente Balogh, Yuntian T. Zhu, Zenji Horita, et al. Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion[J] Materials Science and Engineering: A. 2007, Vol. 444: 153-156.

DOI: 10.1016/j.msea.2006.08.059

Google Scholar

[5] C.F. Gu, L.S. Tóth. The origin of strain reversal texture in equal channel angular pressing. Acta Materialia, 2011, Vol. 59: 5749-5757.

DOI: 10.1016/j.actamat.2011.05.051

Google Scholar

[6] Lapovok . R, D. Tomus, and B. C. Muddle. Low-temperature compaction of Ti–6Al–4V powder using equal channel angular extrusion with back pressure[J]. Materials Science and Engineering: A. 2008, Vol. 490: 171-180.

DOI: 10.1016/j.msea.2008.01.075

Google Scholar

[7] Heon Son, Jeong-Ho Lee, and Yong-Taek Im. Finite element investigation of equal channel angular extrusion with back pressure[J]. Journal of Materials Processing Technology. 2006, Vol. 171: 480-487.

DOI: 10.1016/j.jmatprotec.2005.11.001

Google Scholar

[8] Valiev. R. Z, Islamgaliev .R. K, and Alexandrov I. V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science. 2000, Vol. 45: 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[9] Segal V M, Reznikov V I, Drobyshevkiy A E. et a1. Plastic working of metals by simple shear[J]. Metall, 1981, 1: 115.

Google Scholar

[10] Yoshinori Iwahashi, Zenji Horita, Minoru Nemoto, and Terence G. Langdon. The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia. 1998, Vol. 46: 3317-3331.

DOI: 10.1016/s1359-6454(97)00494-1

Google Scholar

[11] Arima H Nishiday , Kimj C. Superplastic of SiC/7075 composites processed by rotary die equal channel angular pressing[J]. Japan Inst. metals. 2000, Vol. 64 (12): 1224-1229.

DOI: 10.2320/jinstmet1952.64.12_1224

Google Scholar

[12] Roberto B. Figueiredo, Paulo R. Cetlin, and Terence G. Langdon. Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion[J]. Materials Science and Engineering: A. 2011, Vol. 528: 8198-8204.

DOI: 10.1016/j.msea.2011.07.040

Google Scholar

[13] Koji Neishi, Zenji Horita, and Terence G. Langdon. Achieving superplasticity in a Cu–40%Zn alloy through severe plastic deformation[J]. Scripta Materialia. 2001, Vol. 45: 965-970.

DOI: 10.1016/s1359-6462(01)01119-8

Google Scholar

[14] V. Y. Gertsman, R. Birringer, R. Z. Valiev, and H. Gleiter. On the structure and strength of ultrafine-grained copper produced by severe plastic deformation[J]. Scripta Metallurgica et Materialia. 1994, Vol. 30: 229-234.

DOI: 10.1016/0956-716x(94)90045-0

Google Scholar

[15] A. V. Korznikov, Yu V. Ivanisenko, D. V. Laptionok, I. M. Safarov, et al. Influence of severe plastic deformation on structure and phase composition of carbon steel[J]. Nanostructured Materials. 2007, Vol. 4: 159-167.

DOI: 10.1016/0965-9773(94)90075-2

Google Scholar

[16] E. A. El-Danaf, M. S. Soliman, A. A. Almajid, M. M. El-Rayes. Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP[J]. Materials Science and Engineering: A, 2007, 458(1-2): 226-234.

DOI: 10.1016/j.msea.2006.12.077

Google Scholar