An Electrolyte Additive for Use in High-Voltage Lithium-Ion Batteries

Article Preview

Abstract:

A new compound was successfully synthesized as an additive in electrolyte used for high-voltage lithium-ion batteries, owing to its unique structure with the sulfone group that can increase conductivity and broaden the electrochemical window of existing electrolyte. Its lowest unoccupied molecular orbital (LUMO) is-2.686 eV, respectively. The lower LUMO value results in formation of solid electrolyte interface (SEI) film on anode surface which is prior to other solvents and can impede the electrolyte composition. Through the electrochemical test, the electrolyte having this additive (0.2 wt%) showed wider voltage window, enduring the potential up to 5.5V higher than that of 4.8V performed by available commercial high-voltage electrolytes. The additive to electrolyte was effective not only for Li/Li3V2(PO4)3 cell but also for Li/LiMn2O4 cells with a cut-off range of 3.0-4.8 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

503-506

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sony lithium ion battery performance summary, JEC Batt. Newslett. 2 (1994) p.31.

Google Scholar

[2] T. Nagamura, K. Tazawa: Prog. Batt. Sol. Cells Vol. 9 (1990), p.209.

Google Scholar

[3] A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno: Chem. Mater. Vol. 18 (2006), p.804.

Google Scholar

[4] G. Li, H. Azuma, M. Tohda: J. Electrochem. Soc. Vol. 149 (2002), p. A743.

Google Scholar

[5] T. Muraliganth, A. Manthiram: J. Phys. Chem. C Vol. 114 (2010), p.15530.

Google Scholar

[6] N.N. Bramnik, K. Nikolowski, C. Baehtz, K.G. Bramnik, H. Ehrenberg: Chem. Mater. Vol. 19 (2007), p.908.

DOI: 10.1021/cm062246u

Google Scholar

[7] Y. Idemoto, H. Narai, N. Koura: J. Power Sources Vol. 119 (2003), p.125.

Google Scholar

[8] Y. Idemoto, H. Sekine, K. Ui, N. Koura: Solid State Ionics Vol. 176 (2005), p.299.

Google Scholar

[9] H. Saruwatari, T. Ishikawa, Y. Korechika, N. Kitamura, N. Takami, Y. Idemoto: J. Power Sources Vol. 196 (2011), p.10126.

DOI: 10.1016/j.jpowsour.2011.08.016

Google Scholar

[10] M.M. Thackeray, S. -H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedeka, S.A. Hackney: J. Mater. Chem. Vol. 17 (2007), p.3112.

Google Scholar

[11] X. Guo, Y. Li, M. Zheng, J. Zheng, J. Li, Z. Gong, Y. Yang: J. Power Sources Vol. 196 (2011), p.10126.

Google Scholar

[12] K. Xu, U. Lee, S.S. Zhang, T.R. Jow: J. Electrochem. Soc. Vol. 151 (2004), p. A2106.

Google Scholar

[13] W. Xu, C.A. Angell: Electrochem. Solid State Lett. Vol. 4 (2001), p. E1.

Google Scholar

[14] A. Xiao, L. Yang, B.L. Lucht, S. –H. Kang, D.P. Abraham: J. Electrochem. Soc. Vol. 156 (2009), p. A318.

Google Scholar

[15] M. Xu, L. Zhou, L. Hao, L. Xing, W. Li, B. L. Lucht: J. Power Sources Vol. 196 (2011), p.6794.

Google Scholar

[16] X. Sun, C.A. Angell: Solid State Ionics Vol. 175 (2004), p.257.

Google Scholar

[17] X. Sun, C.A. Angell: Electrochem. Commun. Vol. 7 (2005), p.261.

Google Scholar

[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria Pople Gaussian 03, Revision C. 02 Gaussian, Inc., Pittsburgh, PA (2003).

Google Scholar