Effect of Ce0.8Sm0.2O1.9 Interlayer on the Electrochemical Performance of LaBaCo2O5+δ Cathode for IT-SOFCs

Article Preview

Abstract:

The Ce0.8Sm0.2O1.9 (SDC) interlayer was prepared by screen-printing method between LaBaCo2O5+δ (LBCO) cathode and 8YSZ electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The effect of SDC interlayer on the electrochemical performance of LBCO cathode was investigated. Experimental results showed that the LBCO cathode with SDC interlayer showed much lower area-specific resistance (ASR) and polarization overpotential than that of LBCO cathode without SDC interlayer at the same test condition, exhibiting the better electrochemical performance. For LBCO cathode with SDC interlayer, the ASR was 0.457 Ωcm2 at 800 °C in air, about 36.2 % lower than that of the LBCO cathode without SDC interlayer, and the cathodic overpotential was reduced by 38.0 % at a current density of 0.02 Acm-2 at 700 °C in air. The application of a thin-layer SDC interlayer between cathode and dense 8YSZ electrolyte showed great potential in improving the cathode performance for IT-SOFCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

532-536

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C.H. Steele, A. Heinzel, Nature Vol. 414 (2001), p.345.

Google Scholar

[2] N.Q. Minh, J. Am. Ceram. Soc. Vol. 76 (1993), p.563.

Google Scholar

[3] Y. Matsuzaki, Y. Baba, T. Sakurai, Solid State Ionics Vol. 174 (2004), p.81.

Google Scholar

[4] C.M. Lapa, D.P.F. Souza, F.M.L. Figueiredo, F.M.B. Marques, Int. J. Hydrogen Energy Vol. 35 (2010), p.2737.

Google Scholar

[5] H.J. Park G.M. Choi, Solid State Ionics Vol. 178 (2008), p.1746.

Google Scholar

[6] A. Dutta, J. Mukhopadhyay, R.N. Basu, J. Eur. Ceram. Soc. Vol. 29 (2009), p. (2003).

Google Scholar

[7] R.O. Fuentes, R.T. Baker, Int. J. Hydrogen Energy Vol. 33 (2008), p.3480.

Google Scholar

[8] B.B. Patil, S.H. Pawar, J. Alloys Compd. Vol. 509 (2011), p.3644.

Google Scholar

[9] H. Gu, H. Chen, L. Gao, L. Guo, Electrochim. Acta Vol. 54 (2009), p.7094.

Google Scholar

[10] Y. Zheng, H. Gu, H. Chen, L. Gao, X. Zhu, L. Guo, Mater. Res. Bull. Vol. 44 (2009), p.775.

Google Scholar

[11] J.H. Kim, A. Manthiram, J. Electrochem. Soc. Vol. 155 (4) (2008), p. B385.

Google Scholar

[12] C. Xia, W. Rauch, W. Wellborn, M. Liu, Electrochem. Solid-State Lett. Vol. 5 (10) (2002), p. A217.

DOI: 10.1149/1.1503203

Google Scholar

[13] Y. Gong, W. Ji, B. Xie, H. Wang, Solid State Ionics Vol. 192 (2011), p.505.

Google Scholar

[14] D. Herbstritt, A. Weber, E. Ivers-Tiffée, J. Eur. Ceram. Soc Vol. 21 (2001), p.1813.

Google Scholar

[15] E. Ivers-Tiffée, A. Weber, D. Herbstritt, J. Eur. Ceram. Soc Vol. 21 (2001), p.1805.

Google Scholar

[16] W.H. Kim, H.S. Song, J. Moon, H. W. Lee, Solid State Ionics Vol. 177 (2006), p.3211.

Google Scholar

[17] S. Tao, J. T. S. Irvine, J. Electrochem. Soc. Vol. 151 (2) (2004), p. A252.

Google Scholar

[18] L. Lu, Q. Shi, Y. Yang, H. Zhang, Mater. Res. Bull. Vol. 47 (2012), p.1016.

Google Scholar

[19] J.J. Choi, D.S. Park, B.G. S, H.Y. B. Int. J. Hydrogen Energy Vol. 37 (2012), p.9809.

Google Scholar

[20] A. Tsoga, A. Gupta, A. Naoumidis and P. Nikolopoulos. Acta mater. Vol. 48 (2000), p.4709.

Google Scholar

[21] Y. M. Park, H. Kim. Ceram. Int. Vol. 39 (2013), p. (2037).

Google Scholar

[22] R. Knibbe, J. Hjelm, M. Menon, N. Pryds, M. Søgaard, H. J. Wang, and K. Neufeld. J. Am. Ceram. Soc. Vol. 93(9) (2010), p.2877.

Google Scholar

[23] P. Plonczak, M. Joost, J. Hjelm, M. Søgaard, M. Lundberg, P.V. Hendriksena. J. Power Sources Vol. 196 (2011), p.1156.

DOI: 10.1016/j.jpowsour.2010.08.108

Google Scholar

[24] A. Mai, V.A.C. Haanappel, S. Uhlenbruck, F. Tietz, Detlev Stöver. Solid State Ionics Vol. 176 (2005), p.1341.

DOI: 10.1016/j.ssi.2005.03.009

Google Scholar

[25] R. Li, L. Gao, L. Ge, Y. Zheng, M. Zhou, H. Chen, L. Guo. J. Power Sources Vol. 196 (2011), p.9939.

Google Scholar