[1]
Richard A. Bruald. Introductory Combinatiorics [M]. American: North-Holland Pubishing Company (1977).
[2]
J. H vanlint, R.M. Wilson. A Course in Combinatiorics [M]. Beijing: China Machine Press. (2004).
[3]
Zhang S, Zhu L. An improved product construction for large sets of Kirkman triple systems[J]. Discrete mathematics, 2003, 260(1): 307-313.
DOI: https://doi.org/10.1016/s0012-365x(02)00766-5
[4]
Hurd S P, Sarvate D G. An application of partition of indices to enclosings of triple systems[J]. Discrete Mathematics, 2003, 261(1): 337-346.
DOI: https://doi.org/10.1016/s0012-365x(02)00478-8
[5]
Teirlinck L. A completion of Lu's determination of the spectrum of large sets of disjoint Steiner triple systems[J]. J. Combin. Theory (A), 1991, 57: 302-305.
DOI: https://doi.org/10.1016/0097-3165(91)90053-j
[6]
Ji L. A new existence proof for large sets of disjoint Steiner triple systems[J]. J. Combin. Theory(A), 2005, 112 : 308-327.
DOI: https://doi.org/10.1016/j.jcta.2005.06.005
[7]
Král D, Máčajová E, Pór A, et al. Edge-colorings of cubic graphs with elements of point-transitive Steiner triple systems[J]. Electronic Notes in Discrete Mathematics, 2007, 29: 23-27.
DOI: https://doi.org/10.1016/j.endm.2007.07.005
[8]
Zhou J, Chang Y. Existence of good large sets of Steiner triple systems[J]. Discrete Mathematics, 2009, 309(12): 3930-3935.
DOI: https://doi.org/10.1016/j.disc.2008.11.008
[9]
Forbes A D. Uniquely 3-colourable Steiner triple systems[J]. Journal of Combinatorial Theory, Series A, 2003, 101(1): 49-68.
DOI: https://doi.org/10.1016/s0097-3165(02)00016-x
[10]
Ji L, Lei J. Further results on large sets of Kirkman triple systems[J]. Discrete Mathematics, 2008, 308(20): 4643-4652.
DOI: https://doi.org/10.1016/j.disc.2007.08.081
[11]
Lei J. On large sets of Kirkman triple systems and 3-wise balanced design[J]. Discrete mathematics, 2004, 279(1): 345-354.
DOI: https://doi.org/10.1016/s0012-365x(03)00279-6
[12]
Forbes A D, Grannell M J, Griggs T S. On 6-sparse Steiner triple systems[J]. Journal of Combinatorial Theory, Series A, 2007, 114(2): 235-252.
DOI: https://doi.org/10.1016/j.jcta.2006.04.003
[13]
Lindner C C, Quattrocchi G, Rodger C A. Embedding Steiner triple systems in hexagon triple systems[J]. Discrete Mathematics, 2009, 309(2): 487-490.
DOI: https://doi.org/10.1016/j.disc.2007.12.040
[14]
Horak P. On the chromatic number of Steiner triple systems of order 25[J]. Discrete mathematics, 2005, 299(1): 120-128.
DOI: https://doi.org/10.1016/j.disc.2004.07.023
[15]
Kaski P, ÖstergÅrd P R J, Topalova S, et al. Steiner triple systems of order 19 and 21 with subsystems of order 7[J]. Discrete Mathematics, 2008, 308(13): 2732-2741.
DOI: https://doi.org/10.1016/j.disc.2006.06.038
[16]
Grannell M J, Griggs T S, Quinn K A S. Smallest defining sets of directed triple systems[J]. Discrete Mathematics, 2009, 309(14): 4810-4818.
DOI: https://doi.org/10.1016/j.disc.2008.06.021
[17]
Král D, Máčajová E, Pór A, et al. Characterization of affine Steiner triple systems and Hall triple systems[J]. Electronic Notes in Discrete Mathematics, 2007, 29: 17-21.
DOI: https://doi.org/10.1016/j.endm.2007.07.004
[18]
Yin J, Wang C. Kirkman covering designs with even-sized holes[J]. Discrete Mathematics, 2009, 309(6): 1422-1434.
DOI: https://doi.org/10.1016/j.disc.2008.02.016
[19]
Shen H, Wang Y. Embeddings of resolvable triple systems[J]. J of Combin Theory (A), 2000, 89 (1) : 21- 42.
[20]
Shen H. Intersections of Kirkman triple systems[J]. Journal of statistical planning and inference, 2001, 94(2): 313-325.
DOI: https://doi.org/10.1016/s0378-3758(00)00262-7