[1]
K., Graichen, and N., Petit, Constructive Methods for Initialization and Handling Mixed State-Input Constraints in Optimal Control, Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp.1334-1343.
DOI: 10.2514/1.33870
Google Scholar
[2]
N., Yokoyama, and S., Suzuki, Modified Genetic Algorithm for Constrained Trajectory Optimization, Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp.139-144.
DOI: 10.2514/1.3042
Google Scholar
[3]
K., Premalatha, and A. M., Natarajan, Hybrid PSO and GA for Global Maximization, International Journal of Open Problems in Computer Science and Mathematics, Vol. 2, No. 4, 2009, pp.597-608.
Google Scholar
[4]
M., Pontani, and B. A., Conway, Particle Swarm Optimization Applied to Space Trajectories, Journal of Guidance, Control, and Dynamics, Vol. 33, No. 5, 2010, pp.1429-1441.
DOI: 10.2514/1.48475
Google Scholar
[5]
R., Eberhart, and J., Kennedy, A New Optimizer Using Particle Swarm Theory, Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 1995, pp.39-43.
DOI: 10.1109/mhs.1995.494215
Google Scholar
[6]
J., Kennedy, and R., Eberhart, Particle Swarm Optimization, Proceedings of the IEEE International Conference on Neural Networks, Inst. of Electrical and Electronics Engineers, Piscataway, NJ, 1995, p.1942-(1948).
Google Scholar
[7]
M., Pontani, and B. A., Conway, Particle Swarm Optimization Applied to Space Trajectories, Journal of Guidance, Control, and Dynamics, Vol. 33, No. 5, 2010, pp.1429-1441.
DOI: 10.2514/1.48475
Google Scholar
[8]
A., Rahimi, K. D., Kumar, and H., Alighanbari, Particle Swarm Optimization Applied to Spacecraft Reentry Trajectory, International Journal of Open Problems in Computer Science and Mathematics, Vol. 2, No. 4, 2009, pp.597-608.
Google Scholar
[9]
K., Price, R., Storn, and J., Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, 2005, ISBN 3-540-20950-6.
Google Scholar
[10]
A. K., Qin, and P. N., Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, 2005, pp.1785-1791.
DOI: 10.1109/cec.2005.1554904
Google Scholar
[11]
R. Storn, and K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, Vol. 11, No. 4, 1997, pp.341-359.
Google Scholar
[12]
C. W., Brunner, P., Lu, Skip Entry Trajectory Planning and Guidance, Iowa: Iowa State University.
Google Scholar