[1]
Zhang JR, Wang JH, et al. Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder. BIOL PSYCHIATRY Vol. 70 (2011), pp.334-342.
DOI: 10.1016/j.biopsych.2011.05.018
Google Scholar
[2]
Michael D. Greicius, Benjamin H. Flores, et al. Resting-State Functional Connectivity in Major Depression: Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus, BIOL PSYCHIATRY Vol. 62 (2007), pp.429-437.
DOI: 10.1016/j.biopsych.2006.09.020
Google Scholar
[3]
He Y, Chen ZJ, Evans. Small-world anatomical networks in the human brainrevealed by cortical thickness from MRI, Cereb Cortex Vol. 17 (2007), pp.2407-2419.
DOI: 10.1093/cercor/bhl149
Google Scholar
[4]
Costafreda, SG, Chu C, Ashburner J, Fu CH. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE Vol. 7 (2009), pp.6353-1.
DOI: 10.1371/journal.pone.0006353
Google Scholar
[5]
Fu CHY, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand AF, Williams SCR, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol. Psychiatry Vol. 63 (2008), pp.656-662.
DOI: 10.1016/j.biopsych.2007.08.020
Google Scholar
[6]
Gong Q, Wu Q, Scarpazza C, Lui S, Jia Z, Marquand A, et al. Prognostic prediction of therapeutic response in depression using high-field MR imaging. Neuroimage Vol. 55 (2011), pp.1497-503.
DOI: 10.1016/j.neuroimage.2010.11.079
Google Scholar
[7]
First M, Spitzer R, Gibbon M, Williams J. Structured Clinical Interview for DSM-IV Axis I Disorders. Washington. DC: American Psychiatric Press (1997).
Google Scholar
[8]
Williams JBW. A Structured Interview Guide for the Hamilton Depression Rating-Scale. Arch Gen Psychiatry Vol. 45 (1988), pp.742-747.
DOI: 10.1001/archpsyc.1988.01800320058007
Google Scholar
[9]
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic. Neuroimage Vol. 15 (2002), pp.273-289.
DOI: 10.1006/nimg.2001.0978
Google Scholar
[10]
Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: A tutorial overview. Neuroimage Vol. 45(2009), pp.199-209.
DOI: 10.1016/j.neuroimage.2008.11.007
Google Scholar
[11]
Latora V, Marchiori M. Efficient behavior of small-world networks, Phys Rev Lett, Vol. 87 (2001), p.198701.
DOI: 10.1103/physrevlett.87.198701
Google Scholar
[12]
Bannerman DM, Rawlins JNP, et al. Regional dissociations within the hippocampus memory and anxiety, Neuroscience and Biobehavioral Reviews Vol. 28 (2004), pp.273-283.
DOI: 10.1016/j.neubiorev.2004.03.004
Google Scholar
[13]
Devorah SM, Haznedar M, Hazlett EA, et al. Diffusion tensor anisotropy in the cingulate gyrus in schizophrenia, NeuroImage, Vol. 50 (2010), pp.357-365.
DOI: 10.1016/j.neuroimage.2009.12.071
Google Scholar
[14]
Holzschneider K, Wolbers T, Röder B, et al. Cardiovascular fitness modulates brain activation associated with spatial learning, " NeuroImage Vol. 59 (2012), pp.3003-3014.
DOI: 10.1016/j.neuroimage.2011.10.021
Google Scholar
[15]
Zhu XL, Wang X, Xiao J, Liao J, et al. Evidence of a Dissociation Pattern in Resting-StateDefault Mode Network Connectivity in First-Episode, Treatment-Naive Major Depression Patients, BI OL PSYCHIATRY Vol. 71 (2012), pp.611-617.
DOI: 10.1016/j.biopsych.2011.10.035
Google Scholar
[16]
Hua JP, Xiong ZX, Lowey J, Edward S, Edward RD. Optimal number of features as a function of sample size for various classification rules. Bioinformatics Vol. 21 (2005), pp.1509-1515.
DOI: 10.1093/bioinformatics/bti171
Google Scholar
[17]
Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci, (2010), pp.4-22. 6.
DOI: 10.3389/fnsys.2010.00022
Google Scholar