Distributed Feedback Gratings Based on Photo-Polymerization for Organic Solid-State Lasers

Article Preview

Abstract:

A novel preparation method of polymer DFB gratings has developed based on photo-polymerization for organic solid-state lasers. A photopolymer formulation sensitive to ultraviolet light is proposed for fabrication of polymer DFB gratings by spin-coating process. A very low surface relief depth ranging from 12.5 to about 1.0 nm has been demonstrated with a refractive index modulation of about 0.012. The experiment results indicate that the polymer DFB gratings are believed to have promising potentials in the fabrication of low-order DFB organic solid-state lasers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1452-1455

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Dodabalapur, M. Berggren, R.E. Slusher, Z. Bao, A. Timko, P. Schiortino, E. Laskowski, H. E. Katz, and O. Nalamasu, Resonators and materials for organic lasers based on energy transfer, IEEE J. Sel. Top. Quantum Electron , 4, 67 (1998).

DOI: 10.1109/2944.669469

Google Scholar

[2] M. D. McGehee and A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid-state lasers, Adv. Mater. 12, 1655(2000).

DOI: 10.1002/1521-4095(200011)12:22<1655::aid-adma1655>3.0.co;2-2

Google Scholar

[3] A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, Organic solid-state Lasers: Past and future, Science 277, 1787 (1997).

DOI: 10.1126/science.277.5333.1787

Google Scholar

[4] M. D. McGehee, M. A. Dıaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, Semiconducting polymer distributed feedback lasers, Appl. Phys. Lett. 72, 1536(1998).

DOI: 10.1063/1.121679

Google Scholar

[5] G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, Blue , surface-emitting, distributed feedback polyfluorene lasers, Appl. Phys. Lett. 83, 2118(2003).

DOI: 10.1063/1.1612903

Google Scholar

[6] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Laser action from two-dimensional distributed feedback in photonic crystals, Appl. Phys. Lett. 74, 7(1999).

DOI: 10.1063/1.123116

Google Scholar

[7] N. Moll, R. F. Mahrt, C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, andU. Scherf, Evidence for bandedge lasingin a two-dimensional photonic bandgap polymer laser, Appl. Phys. Lett. 80, 734(2002).

DOI: 10.1063/1.1446213

Google Scholar

[8] J. A. Rogers, M. Meier, and A. Dodabalapur, Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers, Appl. Phys. Lett. 73, 1766(1998).

DOI: 10.1063/1.122275

Google Scholar

[9] B. J. Scott, G. Wirnsberger, M. D. McGehee, B. F. Chmelka, and G. D. Stucky, Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography , Adv. Mater. 13, 1231(2001).

DOI: 10.1002/1521-4095(200108)13:16<1231::aid-adma1231>3.0.co;2-8

Google Scholar

[10] J. R. Lawrene, G. A. Turnbull, and I. D. W. Samuel, Polymer laser fabricated by a simple micromolding process, Appl. Phys. Lett. 82, 4023(2003).

DOI: 10.1063/1.1579858

Google Scholar

[11] G. Kranzelbinder, E. Toussaere, J. Zyss, T. Kavc, G. Langer, and W. Kern, Organic surface emitting laser based on a deep-ultraviolet photopolymer containing thiocyanate groups, Appl. Phys. Lett. 82, 2203(2003).

DOI: 10.1063/1.1559952

Google Scholar

[12] Naoto Tsutsum and Arata Fujihara, Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide, Appl. Phys. Lett. 86, 061101(2005).

DOI: 10.1063/1.1861956

Google Scholar

[13] B. M. Monroe, W. K. Smothers, D. E. Keys, R. R. Krebs, D. J. Mickish, A. F. Harrington, S. B. Schicker, M. K. Armstrong, D. M. T. Chan, and C.I. Weathers, Improved photopolymers for holographic recording (I) : Imaging properties, J. Imaging Sci. 35, 19(1991).

Google Scholar

[14] B. M. Monroe, Improved photopolymers for holographic recording (II): Mechanism of hologram formation, J. Imaging Sci. 35, 25(1991).

Google Scholar

[15] H. Kogelnik, Coupled wave theory for thick hologram gratings, Bell Syst. Tech. J. 48, 2909(1969).

DOI: 10.1002/j.1538-7305.1969.tb01198.x

Google Scholar