[1]
E.J. Candes, J. Romberg and T. Tao. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans. Inf. Theory, vol. 5, no. 2, pp, 489-509. (2006).
DOI: 10.1109/tit.2005.862083
Google Scholar
[2]
R. Baraniuk and P. Steeghs. Compressive Radar Imaging [C]. Radar Conference, 2007 IEEE,p.128133,April (2007).
DOI: 10.1109/radar.2007.374203
Google Scholar
[3]
Donoho D L. Compressed sensinh [J]. IEEE Transaction on Information Theory, 2006, 52(4): 1289-1306.
Google Scholar
[4]
Candes E J. Compressive sampling [C] /Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society, 2006: 1433-1452.
Google Scholar
[5]
Baraniuk R. A lecture compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
DOI: 10.1109/msp.2007.4286571
Google Scholar
[6]
Candes E J, Tao T. Near optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transaction on Information Theory, 2006, 52(12): 5406-5425.
DOI: 10.1109/tit.2006.885507
Google Scholar
[7]
Candes E J, Pmmberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communication on Pure and Application Mathematics, 2006, 59(8): 1207-1223.
DOI: 10.1002/cpa.20124
Google Scholar
[8]
Guangming Shi, Danhua Liu, Renhua Gao etc. Advances in Theory and Application of Compressed Sensing [J]. Chinese Journal of Electronics, 2009. 37(5) : 1070-1081.
Google Scholar
[9]
Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693.
DOI: 10.1109/34.192463
Google Scholar
[10]
Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998. 302~310.
Google Scholar