Mirror Transform to Conquer Deception for Particle Swarm Optimization

Article Preview

Abstract:

Particle swarm optimization meets difficulties when handling deceptive problems, because the local optimal attractors misguide the particles and pull them away from the global optimum. Function transform that changes the shape to make it easier for the algorithm to optimize is an efficient way to change the original attraction, but the existing strategies cannot conquer deception. Therefore we propose the mirror transform by simply reversing the original attraction. Experimental results validate the efficiency of our strategy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1601-1605

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kennedy, J., Eberhart, R. Particle swarm optimization[A]. In 1995; 1942-1948 vol. 4.

Google Scholar

[2] Huband, S., Hingston, P., Barone, L., etc. A review of multiobjective test problems and a scalable test problem toolkit[J]. Evolutionary Computation, IEEE Transactions on, 2006, 10 (5): 477-506.

DOI: 10.1109/tevc.2005.861417

Google Scholar

[3] Xin, B., Chen, J., Pan, F. Problem difficulty analysis for particle swarm optimization: deception and modality[A]. In 2009; 623-630.

DOI: 10.1145/1543834.1543919

Google Scholar

[4] Renpu, G. A filled function method for finding a global minimizer of a function of several variables[J]. Mathematical Programming, 1990, 46 (1): 191-204.

DOI: 10.1007/bf01585737

Google Scholar

[5] Parsopoulos, K. E., Vrahatis, M. N. On the computation of all global minimizers through particle swarm optimization[J]. Evolutionary Computation, IEEE Transactions on, 2004, 8 (3): 211-224.

DOI: 10.1109/tevc.2004.826076

Google Scholar

[6] Magoulas, G., Vrahatis, M., Androulakis, G. On the alleviation of the problem of local minima in back-propagation[J]. Nonlinear Analysis, 1997, 30 (7): 4545-4550.

DOI: 10.1016/s0362-546x(96)00369-0

Google Scholar

[7] Parsopoulos, K. E., Vrahatis, M. N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural computing, 2002, 1 (2): 235-306.

Google Scholar

[8] Magoulas, G. Improving the particle swarm optimizer by function" stretching[J]. Advances in Convex Analysis and Global Optimization: Honoring the Memory of C. Caratheodory (1873-1950), 2001, 445.

DOI: 10.1007/978-1-4613-0279-7_28

Google Scholar

[9] Xiong, Y., Lu, W., Mo, Y., etc. Particle swarm optimization based on rotate surface transformation[J]. JOURNAL-ZHEJIANG UNIVERSITY ENGINEERING SCIENCE, 2005, 39 (12): (1946).

Google Scholar

[10] Glover, F. Tabu search: A tutorial[J]. Interfaces, 1990, 20 (4): 74-94.

Google Scholar

[11] Huband, S., Barone, L., While, L., etc. A scalable multi-objective test problem toolkit[A]. In 2005; 280-295.

DOI: 10.1007/978-3-540-31880-4_20

Google Scholar

[12] Shi, Y., Eberhart, R. A modified particle swarm optimizer[A]. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on[C], 1998; 69-73.

DOI: 10.1109/icec.1998.699146

Google Scholar