[1]
Bhartiya, S., Whiteley, J.R.: Development of Inferential measurements Using Neural Networks. ISA Transactions 40(4), 307–323 (2001).
DOI: 10.1016/s0019-0578(01)00004-0
Google Scholar
[2]
Chen, W., Li, J.M.: Adaptive Output-feedback Regulation for Nonlinear Delayed Systems Using Neural Network. International Journal of Automation and Computing 5(1), 103–108 (2008).
DOI: 10.1007/s11633-008-0103-2
Google Scholar
[3]
Yan, W.W., Shao, H.H., Wan, X.F.: Soft sensing modeling based on support vector machine and Bayesian model selection. Computers and Chemical Engineering 28(8), 1489–1498 (2004).
DOI: 10.1016/j.compchemeng.2003.11.004
Google Scholar
[4]
Zhang, Y., Su, H.Y., Liu, R.L., Chu, J.: Fuzzy Support Vector Regression Model of 4-CBA Concentration for Industrial PTA Oxidation Process. Chinese J. Chem. Eng. 13(5), 642–648 (2005).
Google Scholar
[5]
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. NewYork: Plenum Press, (1981).
Google Scholar
[6]
Storn R. and Price K., Differential Evolution - A Simple and Efficient Heuristic Strategy for Global Optimization over Continuous Spaces, Journal of Global Optimization, vol. 11, 341–359, (1997).
Google Scholar
[7]
Vesterstrom J., Thomsen R., A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems, Evolutionary Computation, vol. 2, 1980–1987, ( 2004. ).
DOI: 10.1109/cec.2004.1331139
Google Scholar
[8]
Neri F., Tirronen V., Recent Advances in Differential Evolution: a Review and Experimental Analysis, Artificial Intelligence Review, Vol. 33, , 61-106, (2010).
DOI: 10.1007/s10462-009-9137-2
Google Scholar
[9]
Ghosh, S., Das, S., Vasilakos, A.V., Suresh, K., On Convergence of Differential Evolution over a Class of Continuous Functions with Unique Global Optimum, IEEE Trans. on Systems, Man, and Cybernetics -part B, Vol. 42, No. 1, 107-124. ( 2012).
DOI: 10.1109/tsmcb.2011.2160625
Google Scholar
[10]
Takagi, T., Sugeno, M.: Fuzzy identification of system s and its app lication to modeling and control. IEEE Trans. on Systems, Man and Cybernetics 15(1), 116–132 (1985).
DOI: 10.1109/tsmc.1985.6313399
Google Scholar