[1]
Yunhao Liu, Zheng Yang, Xiaoping Wang. Location localization and localizability[J]. Journal of Computer Science and Technology. 2010. 5, 25(2): 274-297.
Google Scholar
[2]
G. F. Nan, M. Q. Li, and J. Li, Estimation of node localization with a real-coded genetic algorithm in WSNs,. in Proc. Int. Conf. Machine Learning and Cybern, pp.873-878, (2007).
DOI: 10.1109/icmlc.2007.4370265
Google Scholar
[3]
M. Marks, and E. Niewiadomska-Szynkiewicz, Two-phase stochastic optimization to sensor network localization,. in Proc. Int. Conf. Sensor Techn. and App, pp.134-139, (2007).
DOI: 10.1109/sensorcomm.2007.4394910
Google Scholar
[4]
Q. Zhang, J. Huang, J. Wang, C. Jin, J. Ye, and W. Zhang et al., A two-phase localization algorithm for wireless sensor network, in Proc. Int. Conf. Info. Autom., pp.59-64, (2008).
Google Scholar
[5]
N. M. A. Latiff,C. C. Tsimenidis,B. S. Sharif. Performance comparison of optimization algorithms for clustering in wireless sensor networks[C],In: Proc. IEEE Int. Conf. Mobile Ad Hoc Sensor Systems,2007: 1-4.
DOI: 10.1109/mobhoc.2007.4428638
Google Scholar
[6]
J. Vesterstrom, R. Thomsen. A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems[C],In: Proc. Congress on Evolutionary Computation,2004: 1980-(1987).
DOI: 10.1109/cec.2004.1331139
Google Scholar
[7]
Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings of 1998 IEEE International Conference on Evolutionary Computation IEEE, Piscataway, NJ, USA, 1998: 69-73.
DOI: 10.1109/icec.1998.699146
Google Scholar
[8]
Van den Bergh F. An analysis of particle swarm optimizers. PhD thesis, Department of Computer Science, University of Pretoria, Pretoria, South Africa, (2002).
Google Scholar
[9]
Shi Y, Eberhart R C. Empirical study of partile swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation. IEEE, Piscataway, NJ, USA, (1999).
Google Scholar
[10]
Zheng Y L, Ma L H, Zhang L Y, et al. Empirical study of particle swarm optimizer with an increasing inertia weight. Proceedings of 2003 Congress on Evolutionary Computation. IEEE, Piscataway, NJ, USA, 2003: 221-226.
DOI: 10.1109/cec.2003.1299578
Google Scholar
[11]
Jiang C W, Etorre B. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment. Energy Conversion and Management, 2005, 46(17): 2689-2696.
DOI: 10.1016/j.enconman.2005.01.002
Google Scholar
[12]
Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers & Operations Research, 2006, 33(3): 859-871.
DOI: 10.1016/j.cor.2004.08.012
Google Scholar
[13]
KENNEDY J, EBERHART R. Particle Swarm Optimization[C]. Proceedings IEEE Int Conf on Neural Networks, 1995: 1942- (1948).
Google Scholar
[14]
EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings 6th Int Symposium on Micro Machine and Human Science, 1995: 39-43.
DOI: 10.1109/mhs.1995.494215
Google Scholar