[1]
Tony Bellotti, Zhiyuan Luo, Alex Gammerman Reliable Classification of Childhood Acute Leukaemia from Gene Expression Data Using Confidence Machines [C]. Atlanta, GA: IEEE International Conference on Granular Computing, 2006. 148-153.
DOI: 10.1109/grc.2006.1635774
Google Scholar
[2]
Nouretdinov I, Costafreda SG, Gammerman A, Chervonenkis A, Vovk V, Vapnik V, Fu CHY. Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression [J]. NEUROIMAGE, 2011, 56(2): 809-813.
DOI: 10.1016/j.neuroimage.2010.05.023
Google Scholar
[3]
R Polikar, L UdPa, S UdPa, V Honavar. An incremental learning algorithm with confidence estimation for automated identification of NDE signals [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51(8): 990-1001.
DOI: 10.1109/tuffc.2004.1324403
Google Scholar
[4]
LI Yang, et al. A novel network anomaly detection method based on TCM-KNN algorithm [J]. Journal of Software, 2007, 18(10): 2595-2604. ( In Chinese ).
Google Scholar
[5]
Jiawei Han, Micheline Kamber. Data Mining: Concept and Techniques, Second Edition [M]. Beijing: China Machine Press, 2006. 359-366.
Google Scholar
[6]
Tom M, Mitchell. Machine Learning [M]. Beijing: China Machine Press, 2005. 96-101. (In Chinese).
Google Scholar
[7]
Vladimir N Vapnik. Statistical Learning Theory [M]. Beijing: Publishing House of Electronics Industry, 2009. 247-271.
Google Scholar
[8]
Wang Huazhen. Research and Application of Classifier with Confidence [D]. Xiamen: Xiamen University, 2009. 13-16. (In Chinese).
Google Scholar
[9]
De Brabanter K, Karsmakers P, De Brabanter J, Suykens JAK, De Moor B. Confidence bands for least squares support vector machine classifiers: A regression approach [J]. PATTERN RECOGNITION, 2012, 45(6): 2280-2287.
DOI: 10.1016/j.patcog.2011.11.021
Google Scholar
[10]
M D Richard, R P Lippmann. Neural network classifiers estimate Bayesianian a posterior probabilities [J]. Neural Computation, l991, 3(4): 46l - 483.
DOI: 10.1162/neco.1991.3.4.461
Google Scholar
[11]
C L Liu, M Nakagawa. Precise candidate selection for large character set recognition by confidence evaluation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(6): 636-642.
DOI: 10.1109/34.862202
Google Scholar
[12]
QIU De-hong, CHEN Chuan-bo, JIN Xian-ji. Confidence Learning Machine Based on Algorithmic Theory of Randomness and Dissimilarity Description [J]. Journal of Computer Research and Development, 2004, 41(9): 1586 - 1592. ( In Chinese ).
Google Scholar
[13]
Zheng J, Lu BL. A support vector machine classifier with automatic confidence and its application to gender classification [J]. NEUROCOMPUTING, 2011, 74(11): 1926-(1935).
DOI: 10.1016/j.neucom.2010.07.032
Google Scholar
[14]
Tong B, Qin ZG, Suzuki E. Topology Preserving SOM with Transductive Confidence Machine[C]. Canberra, AUSTRALIA: 13th International Conference on Discovery Science, Lecture Notes in Artificial Intelligence, 2010. Vol. 6332, 27-41.
DOI: 10.1007/978-3-642-16184-1_3
Google Scholar
[15]
Wang HZ, Lin CD, Yang F, Hu XQ. Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39(5): 425-432.
DOI: 10.1016/j.compbiomed.2009.02.002
Google Scholar
[16]
Andrew R Webb. Statistical Pattern Recognition ( Second Edition ) [M]. Beijing: Publishing House of Electronics Industry, 2004. ( In Chinese ).
Google Scholar
[17]
Chow C K. On optimum recognition error and reject trade off [J]. IEEE Trans. on Info. Theory, 1970, 16: 41-46.
DOI: 10.1109/tit.1970.1054406
Google Scholar
[18]
Zidelmal Z, Amirou A, Belouchrani A. HEARTBEAT CLASSIFICATION USING SUPPORT VECTOR MACHINES (SVMs) WITH AN EMBEDDED REJECT OPTION[J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26(1): 1250001-1-17.
DOI: 10.1142/s0218001412500012
Google Scholar
[19]
Zhang YG, Zhang BL, Coenen F, Lu WJ. Highly Reliable Breast Cancer Diagnosis with Cascaded Ensemble Classifiers [C]. Brisbane, AUSTRALIA: WCCI 2012 IEEE World Congress on Computational Intelligence, (2012).
DOI: 10.1109/ijcnn.2012.6252547
Google Scholar
[20]
Choi Hosik, Yeo Donghwa, Kwon Sunghoon, Kim Yongdai. Gene selection and prediction for cancer classification using support vector machines with a reject option [J]. Computational Statistics and Data Analysis, 2011, 55(5): 1897-(1908).
DOI: 10.1016/j.csda.2010.12.001
Google Scholar