Mechanical Properties and Thermal Behavior of Thermoplastic Polyurethane Toughening Polylactide Prepared by Vane Extruder

Article Preview

Abstract:

Vane extruder is a novel equipment in which polymer mainly suffers from elongational deformation. It has the character of short thermal mechanical process so that the biodegradable polymer will less decompose during processing. Different weight ratios of thermoplastic polyurethane (TPU) were blend with polyactide (PLA) in vane extruder. The results show that TPU plays the role of toughening the PLA which is well dispersed in the PLA matrix. From the mechanical properties, for the composite with 40 wt % TPU, the elongation at break of the blend reached 335%. Meanwhile the results observed from DSC curves revealed apparent partial miscibility of the blends and enhanced crystallization ability of PLA due to the influence of elongational flow. From the DMA curves, it could be found that PLA and TPU compatibility of two phases have been improved to some extent because of the elongational deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. P. Qu, X. Q. Zhao, J. B. Li, S. Q. Cai: J. Appl. Polym. Sci. 10 (2012), p.1002.

Google Scholar

[2] Zhu Z., Xiong C., Zhang L., Deng X.: J. Polym. Sci. Part A: Polym. Chem. 35, 709(1997).

Google Scholar

[3] Tsuji H., Ikada Y. J.: Appl. Polym. Sci. 60, 2367(1996).

Google Scholar

[4] Anderson K. S., Lim S. H., Hillmyer M. A.: J. Appl. Polym. Sci. 89, 3757(2003).

Google Scholar

[5] Cohn D., Hotovely-Salomon A.: Polymer 46, 2068(2005).

Google Scholar

[6] Shibata M., Inoue Y., Miyoshi M.: Polymer 47, 3557(2006).

Google Scholar

[7] Piorkowska E., Kulinski Z., Galeski A., Masirek R.: Polymer 47, 7178(2006).

DOI: 10.1016/j.polymer.2006.03.115

Google Scholar

[8] Cooper T. R., Storey R. F.: Macromolecules 4, 655(2008).

Google Scholar

[9] Simmons A., Hyvarinen J., Poole-Warren L.: Biomaterials 27, 4484(2006).

Google Scholar

[10] A. J. Nijenhuis, E. Colstee, D. W. Grijpma, A. J. Pennings: Polymer 37, 5849(1996).

Google Scholar

[11] K. S. Anderson, S. H. Lim, M. A. Hillmyer: J. Appl. Polym. Sci. 89, 3757(2003).

Google Scholar

[12] E. Piorkowska, Z. Kulinski, A. Galeski, R. Masirek: Polymer 47, 7178(2006).

DOI: 10.1016/j.polymer.2006.03.115

Google Scholar

[13] N. Lopez-Rodriguez, A. Lopez-Arraiza, E. Meaurio, J. R. Sarasua, Polym: Eng. Sci. 46, 1299(2006).

Google Scholar

[14] L. J. Liu, S. M. Li, H. Garreau, M. Vert: Biomacromolecules 1, 350(2000).

Google Scholar

[15] H. Tsuji, A. Mizuno, Y. Ikada: J. Appl. Polym. Sci. 70, 2259(1998).

Google Scholar

[16] H. Tsuji, Y. Ikada: J. Appl. Polym. Sci. 63, 855(1997).

Google Scholar

[17] J. C. Meredith, E. J. Amis: Macromol. Chem. Phys. 201, 733(2000).

Google Scholar

[18] M. Shibata, Y. Inoue, M. Miyoshi: Polymer 47, 3557(2006).

Google Scholar

[19] W. F. Liu, J. P. Qu, S. K. Jia ,Y. Q. Zhao: Advanced Materials Research(2012).

Google Scholar

[20] Li B., Dong F.X., Wang X.L., et al: European Polymer Journal 45, 2996-3003 (2009).

Google Scholar

[21] J. J. Chen, J. P. Qu, H. Y. Liu, et al: Plastic 41, 4-6(2013).

Google Scholar

[22] Zhang D. F., Zumbrunnen D. A., Liu Y. H.: AIChE Journal 44, 442-451(1998).

Google Scholar

[23] Liu Y. H., Zumbrunnen D.: Journal of Materials Science 34, 1921-1931(1999).

Google Scholar