Fabrication of a Carbon Nanotube Gas Sensor Microelectrodes and its Application for Ammonia Detection

Article Preview

Abstract:

With the increasing needs for high-performance gas sensors in industrial production, environmental monitoring and so on, the research on gas sensors is becoming more and more important. In this paper, the electric field intensity distribution simulation process of the interdigital microelectrodes (IMEs) is discussed in details to get the proper electrode structural parameters. The IMEs on the ITO surface with a minimum gap of about 4μm are achieved by lithography, which provides a reliable, low-cost manufacturing method. Sensitive components are made of the multi-walled carbon nanotubes modified materials. The gas-sensing property of the sensor is detected for ammonia. The experiment result shows that the performance of the nanomodified sensor is obviously improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-311

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Amadou L. Ndiaye, Christelle Varenne, Pierre Bonnet: Elaboration of single wall carbon nanotubes-based gas sensors: Evaluating the bundling effect on the sensor performance, Thin Solid Films (2012), 520: 4465-4469.

DOI: 10.1016/j.tsf.2012.02.071

Google Scholar

[2] J. A. Robinson, E.S. Snow, F.K. Perkins: Improved chemical detection using single-walled carbon nanotube network capacitors, Sensors and Actuators A(2007), 135: 309-314.

DOI: 10.1016/j.sna.2006.07.027

Google Scholar

[3] [Youngmin Parka, Ki-Young Donga, Jinwoo Lee, Jinnil Choia: Development of an ozone gas sensor using single-walled carbon nanotubes, Sensors and Actuators B: Chemical(2009), 140: 407-411.

DOI: 10.1016/j.snb.2009.04.055

Google Scholar

[4] Hongjun Jing, Yadong Jiang, Xiaosong Du: Dimethyl methylphosphonate detection with a single-walled carbon nanotube capacitive sensor fabricated by airbrush technique, J Mater Sci: Mater Electron(2013), 24: 667-673.

DOI: 10.1007/s10854-012-0789-3

Google Scholar

[5] R. G. Compton, Neus Godino, Xavier Borrise et al: Mass Transport to Nanoelectrode Arrays and Limitations of the Diffusion Domain Approach : Theory and Experiment. J. Phys. Chem. C(2009), 113: 11119-11125.

DOI: 10.1021/jp9031354

Google Scholar

[6] Dajing Chen, Sheng Lei, Renhui Wang: Dielectrophoresis Carbon Nanotube and Conductive Polyaniline Nanofiber NH3 Gas Sensor. Chinese Journal of Analytical Chemistry(2012), 40: 145-149.

DOI: 10.1016/s1872-2040(11)60524-0

Google Scholar

[7] Ting Zhang, Syed Mubeen, Nosang V Myung et al: Recent Progress in Carbon Nanotube-based Gas Sensors. Nanotechnology(2008), 19: 1-15.

DOI: 10.1088/0957-4484/19/33/332001

Google Scholar

[8] Xiaofei Yan, Maohua Wang et al: Progress of interdigitated array microelectrodes based impedance immunosensor. CHINESE J ANAL CHEM(2011), 10: 1601-1610.

DOI: 10.3724/sp.j.1096.2011.01601

Google Scholar

[9] Douglas R. Kauffman, Alexander Star et al: Carbon Nanotube Gas and Vapor Sensors. Angew. Chem. Int. Ed(2008), 47: 6550-6570.

DOI: 10.1002/anie.200704488

Google Scholar

[10] Y. M. Wong, W. P. Kang, J. L. Davidson et al: A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B(2003), 93: 327-332.

DOI: 10.1016/s0925-4005(03)00213-2

Google Scholar

[11] A. R. Mohd Syaifudina, K. P. Jayasunderab, S. C. Mukhopadhyaya: A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sensors and Actuators B, 137: 67-75.

DOI: 10.1016/j.snb.2008.12.053

Google Scholar

[12] U. Frey, U. Egert, F. Heer et al: Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosensors and Bioelectronics(2009), 24: 2191-2198.

DOI: 10.1016/j.bios.2008.11.028

Google Scholar

[13] Bhavin B. Parekh, Giovanni Fanchini, Goki Eda et al: Improved conductivity of transparent single- wall carbon nanotube thin films via stable post deposition functionalization. Appl. Phys. Lett(2007), 90: 1-3.

DOI: 10.1063/1.2715027

Google Scholar

[14] Wei Zhang, Shao Xie, Mei Li et al: Electrochemical characteristics of an interdigitated microband electrode array of boron-doped diamond film. Collect. Czech. Chem. Commun(2009), 74: 393-407.

DOI: 10.1135/cccc2008161

Google Scholar

[15] T. Ueda, S. Katsuki, K. Takahashi, et al: Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature. Diamond & Related Materials(2008), 17: 1586-1589.

DOI: 10.1016/j.diamond.2008.03.009

Google Scholar

[16] Ramin Banan Sadeghian, Mojtaba Kahrizi: A novel miniature gas ionization sensor based on freestanding gold nanowires. Sensors and Actuators A(2007), 137: 248-255.

DOI: 10.1016/j.sna.2007.03.010

Google Scholar

[17] G. U. Sumanasekera, L. Grigorian, K. A. Williams et al: Reversible Intercalation of Charged Iodine Chains into Carbon Nanotube Ropes. Phys. Rev. Lett(1998), 80(25): 5560-5563.

DOI: 10.1103/physrevlett.80.5560

Google Scholar

[18] G. V. Kamarchuk, Igor G. Kolobov, Andrei V. Khotkevich et al: New chemical sensors based on point hetero contact between single wall carbon nanotubes and wires. Sens. Actuators B: Chem(2008), 134: 1022-1026.

DOI: 10.1016/j.snb.2008.07.012

Google Scholar