The Strain Distribution and Equilibrium Morphology for Dome-Shaped Ge/Si Semiconductor Quantum Dot

Article Preview

Abstract:

The stress and strain in a growing sample are driving forces leading to the formation of self-assembled quantum dots in lattice-mismatched heteroepitaxy.The stress and strain distributions, as well as the dependence of the strain energy on the aspect ratio, of a dome self-assembled Ge/Si semiconductor quantum dot are investigated based on finite element method of anisotropic theory of elasticity. The free energy consisting of the strain energy and surface energy is defined, and used to study the equilibrium shape of the systems. The results are consistent with experiment observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-46

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Fafard, K. Hinzer and S. Raymond, Science, Vol. 274(1996), p.1350.

Google Scholar

[2] J. Phillips, K. Kamath and P. Bhattacharya, Appl. Phys. Lett, Vol. 72(1998), p. (2020).

Google Scholar

[3] S. Kim, H. Mohseni and M. Erdtmann, Appl. Phys. Lett, Vol. 73(1998), p.963.

Google Scholar

[4] W. M. Zhou and C. Y. Wang, Acta. Phys. Sin, Vol. 532004), p.4308(in chinese).

Google Scholar

[5] K. Brunner, Rep Prog Phys, Vol. 65(2002), p.27.

Google Scholar

[6] M. C. Xu, Y. Temko and T. Suzuki, J. Appl. Phys, Vol, 98(2005), p.083525.

Google Scholar

[7] J. E. Prieto and I. Markov, Phys. Rev. B, Vol. 72: 205412(2005).

Google Scholar

[8] A. V. Dvurechenskii, A. V. Nenashev and A. I. Yakimov, Nanotechnology, Vol. 13(2002), p.75.

Google Scholar

[9] C . Pryor, J. Kim, L. W. Wang and A. J. Williamson, J. Appl. Phys, Vol. 83(1998), p.2548.

Google Scholar

[10] M. Califano and P. Harrison, Phys. Rev. B, Vol. 61(2000), p.0959.

Google Scholar

[11] Y. Kikuchi, H. Sugii and K. Shintani, J. Appl . Phys, Vol. 89(2001), p.1191.

Google Scholar

[12] M. A. Makeev and A. Madhukar, Phys. Rev. Lett, Vol. 86(2001), p.5542.

Google Scholar

[13] A. D. Andreer, J. R. Downes, D. A. Faux and E. P. O'Reilly, J. Appl. Phys, Vol. 86(1997), p.297.

Google Scholar

[14] G. S. Pearson and D. A. Faux, J. Appl. Phys, Vol. 88(2001), p.730.

Google Scholar

[15] B. Jogai, J. Appl. Phys, Vol. 88(2000), p.5050.

Google Scholar

[16] F. Glas, J Appl Phys, Vol. 90(2001), p.3232.

Google Scholar

[17] E. Pan, B. Yang, J. App. l Phys, Vol. 90(2001), p.6190.

Google Scholar

[18] T. Benabbas, Y. Androussi and A. Lefebvre, J. Appl. Phys, Vol. 86(1999), p.964.

Google Scholar

[19] A. E. Romanov, G. E. Beltz, W. T. Fischer, P. M. Petroff and J. S. Speck, J. Appl. Phys, Vol. 89(2001), p.4523.

Google Scholar

[20] G. R. Liu and Jerry .S. S. Quek, Semicond Sci Technol, Vol. 17(2002), p.630.

Google Scholar

[21] C. Y. Cai and W. M. Zhou, Acta. Phys. Sin, Vol. 56(2007), p.4841 (in chinese).

Google Scholar

[22] T. I. Kamins, E. C. Carr, R. S. Williams and S. J. Rosner, J. Appl. Phys, Vol. 81(1997), p.211.

Google Scholar

[23] F. M. Ross, J. Tersoff and R. M. Tromp, Phys. Rev. Lett, Vol. 80(1998), p.984.

Google Scholar

[24] W. M. Zhou, C. Y. Wang, Y. H. Chen and Z. G. Wang, Chin Phys, Vol. 15 (2006), p.1315.

Google Scholar

[25] T. Benabbas, Y. Androussi and A. Lefebvre, J. Appl. Phys, Vol. 86(1999), p.945.

Google Scholar

[26] P. Liu, Y. W. Zhang and C. Lu, Phys Rev B, Vol. 68(2003), p.95314.

Google Scholar

[27] H. T. Johnson and L. B. Freund, J. Appl. Phys, Vol. 81(1997), p.6081.

Google Scholar

[28] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett, Vol. 64(1990), p. (1943).

Google Scholar

[29] W. M. Zhou, C. Y. Cai, S. Y. Yin and Wang C Y, Appl. Surf . Sci, Vol. 255(2008), p.2400.

Google Scholar