Dynamical Behaviors of Stochastic Hopfield Neural Networks with Reaction-Diffusion Terms

Article Preview

Abstract:

Dynamical behaviors of stochastic Hopfield neural network with delays and reaction-diffusion terms are investigated. By employing Lyapunov method, Poincare inequality and linear matrix inequality, some novel criteria on ultimate boundedness, weak attractor and asymptotic stability are obtained. The criteria are independent of the magnitude of the delays, and dependent on the diffusion effects and the derivative of the delays. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

523-527

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Hopfield: Proceedings of the National Academy of Sciences, USA 79 (1982), 2554.

Google Scholar

[2] J.J. Hopfield: Proceedings of the National Academy of Sciences, USA 81 (1984), 3088.

Google Scholar

[3] S. Young, P. Scott and N. Nasrabadi: IEEE Transactions on Image Process 6 (1997), 357.

Google Scholar

[4] W.J. Li and T. Lee: IEEE Transactions on Neural Networks 12 (2001) , 1400.

Google Scholar

[5] L. Liang and J. Cao: Phys. Lett. A 314 (2003), 434.

Google Scholar

[6] Z. Zhao, Q. Song and J. Zhang: Comput. Math. Appl. 51 (2006), 475.

Google Scholar

[7] K. Li, Z. Li and X. Zhang: Int. Math. Forum 2 (2007), 1397.

Google Scholar

[8] R.C. Wu and W. Zhang: Expert Syst. Appl. 36 (2009), 9834.

Google Scholar

[9] J. Pan and S. M. Zhong: Neurocomputing 73 (2010), 1344.

Google Scholar

[10] X. H. Zhang, S. L. Wu and K. L. Li: Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 1524.

Google Scholar

[11] Y. F. Wang, P. Lin and L. S. Wang: Nonlinear Anal-Real. 13 (2012), 1353.

Google Scholar

[12] H. Huang and G. Feng: Physica A 381 (2007) , 93.

Google Scholar

[13] Q. Song and Z. Wang: Physica A 387 (2008), 3314.

Google Scholar

[14] C. Huang, P. Chen, Y. He, L. Huang and W. Tan : Appl. Math. Lett. 21 (2008) , 701.

Google Scholar

[15] C. Huang and J.D. Cao: Neurocomputing 72 (2009), 3352.

Google Scholar

[16] H.Y. Zhao, N. Ding and L. Chen: Chaos Soliton. Fract. 40 (2009) , 1653.

Google Scholar

[17] M. Dong, H. Zhang and Y. Wang,: Neurocomputing 72 (2009), (1999).

Google Scholar

[18] C. Huang and J.D. Cao: Neurocomputing 73 (2010), 986.

Google Scholar

[19] X.D. Li: Neurocomputing 73 (2010), 7498.

Google Scholar

[20] Q. Zhu and J. Cao: IEEE Trans. Syst. Man Cybern. B 41 (2011), 341.

Google Scholar

[21] C.H. Wang, Y.G. Kao and G.W. Yang: Neurocomputing 89 (2012), 55.

Google Scholar

[22] Y. Xu and B. Cui: Chaos Soliton. Fract. 36 (2008) , 469.

Google Scholar

[23] Q. Song and Z. Zhao: Chaos Soliton. Fract. 25 (2005) , 393.

Google Scholar

[24] H. Jiang and Z. Teng: Neural Networks 17 (2004), 1415.

Google Scholar

[25] H. Jiang and Z. Teng: Neural Networks 72 (2009), 2455.

Google Scholar

[26] L. Wan and Q.H. Zhou: Nonlinear Anal-Real 12 (2011), 2561.

Google Scholar

[27] L. Wan, Q.H. Zhou, P. Wang and J. Li: Nonlinear Anal-Real 13 (2012), 953.

Google Scholar

[28] R. Temam: Infinite Dimensional Dynamical Systems in Mechanics and Physics (Springer, NewYork, 1998).

Google Scholar