[1]
Lv J H, Complex network synchronization: theory, methods, application and prospect. Mechanical progress 2008, 38(6)7-22.
Google Scholar
[2]
Wang X F, Li X, Chen G R, Complex network theory and application, Beijing: Tsinghua university press, (2006).
Google Scholar
[3]
Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 1969, 22(3): 437-467.
DOI: 10.1016/0022-5193(69)90015-0
Google Scholar
[4]
Cheng D Z, Qi H S, TheSemi-tensor Product of Matrices. Beijing: science press. (2007).
Google Scholar
[5]
Xu H L, Wang S T, Structure Analysis of Probabilistic Boolean Networks forGene Regulatory Networks Modeling. Journalof Southern Yangtze University(Natural Science Edition). 2004, 3(5): 124-127.
Google Scholar
[6]
Cheng D Z, Qi H S, Li Z Q, Liu J B. Stability and stabilization of Boolean networks. International Journal of Robust and Nonlinear Control, 2011, 21(2): 134-156.
DOI: 10.1002/rnc.1581
Google Scholar
[7]
Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45(7): 1659-1667.
DOI: 10.1016/j.automatica.2009.03.006
Google Scholar
[8]
Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Systems and Control Letters, 2010, 59(12): 767-774.
DOI: 10.1016/j.sysconle.2010.09.002
Google Scholar
[9]
Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensorProduct Approach. Lon-don: Springer, (2011).
Google Scholar
[10]
Nabil H. Mustafa, AlesksanderPerker Listen to your neighbors How (not) to reach a consensus. Siam J. Discrete Math. Society for Industrial and Applied Mathematics. 2004, 634–660.
DOI: 10.1137/s0895480102408213
Google Scholar