[1]
T. C. E. Cheng, L. Y. Kang, C. T. Ng. Due-date assignment and single machine scheduling with deteriorating jobs. J. Oper. Res. Soc., vol. 55 (2004), pp.198-203.
DOI: 10.1057/palgrave.jors.2601681
Google Scholar
[2]
Liqi Zhang, Lingfa Lu, J. Yuan. Single machine scheduling with release dates and rejection. Eur. J. Oper. Res., vol. 198 (2009), pp.975-978.
DOI: 10.1016/j.ejor.2008.10.006
Google Scholar
[3]
M.Y. Kovalyov, W. Kubiak. A fully polynomial approximation scheme for the weighted earliness-tardiness problem. Oper. Res., vol. 47 (1999), pp.757-761.
DOI: 10.1287/opre.47.5.757
Google Scholar
[4]
M. Ji, T. C. E. Cheng. Parallel-machine scheduling with simple linear deterioration to minimize total completion time. Eur. J. Oper. Res., vol. 188 (2008), pp.342-347.
DOI: 10.1016/j.ejor.2007.04.050
Google Scholar
[5]
Liying Kang, C. T. Ng. A note on a fully polynomial-time approximation scheme for parallel-machine scheduling with deteriorating jobs. Int. J. Prod. Econ., vol. 109 (2007), pp.180-184.
DOI: 10.1016/j.ijpe.2006.11.014
Google Scholar
[6]
S. Li, J. Yuan. Parallel-machine scheduling with deteriorating jobs and rejection. Theor. Comput. Sci., vol. 411 (2010), pp.3642-3650.
DOI: 10.1016/j.tcs.2010.06.008
Google Scholar
[7]
M. Liu, F. Zheng, C. Chu, J. Zhang. An FPTAS for uniform machine scheduling to minimize makespan with linear deterioration. J. Comb. Optim., vol. 23 (2012), pp.483-492.
DOI: 10.1007/s10878-010-9364-0
Google Scholar
[8]
R. L. Graham, E. L. Lawler , J. K. Lenstra, A. H. G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math., vol. 5 (1979), pp.287-326.
DOI: 10.1016/s0167-5060(08)70356-x
Google Scholar