Model of Mechatronics Robots Tool with Controlled Geometry

Article Preview

Abstract:

The paper presents a model of tool with controlled geometry of the active surface. This tool is very suitable for use with an industrial robot, for example, to form polystyrene foam. The tool was built in the form of two discs mounted on axes stepper motors positioned in the frame. This discs combined using two wires with feature a length of a wire compensation system. It was made using the spiral spring. Tool geometry was set by rotating one of the discs at a specific angle (0-180o). After starting the both engines, concurrently at the same direction, surface of tool action is obtained in the form of hyperboloid. To run the tool uses stepper motors connected to a computer equipped with an interface card and specially developed control software. Tool joined to the IRb60 robot wrist can obtain curved surface as a superposition of the kinematics of tool and robot wrist.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-389

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. H. Chen, Y. N. Hu, Implementation of a Robot System for Sculptured Surface Cutting. Part I Rough machining. Int. J. Adv. Manuf. Techn., vol. 15, (1999), pp.624-629.

DOI: 10.1007/s001700050111

Google Scholar

[2] Y. N. Hu, Y. H. Chen, Implementation of a Robot System for Sculptured Surface Cutting. Part II. Finish machining. Int. J. Adv. Manuf. Techn., vol. 15, (1999), pp.630-639.

DOI: 10.1007/s001700050112

Google Scholar

[3] H. Latos, T. Mikolajczyk, Surface Shaping with Industrial Robot. OPTIROB'2006, Predeal, Romania, University POLITEHNICA, of Bucharest, (2006), pp.265-269.

Google Scholar

[4] T. Mikolajczyk, Manufacturing Using Robot. Advanced Materials Research, vol. 463-464, (2012) pp.1643-1646.

DOI: 10.4028/www.scientific.net/amr.463-464.1643

Google Scholar

[5] T. Mikolajczyk, Robot Application to Surface Finishing, Journal of Polish CIMAC, Vol. 5, Nr 3, (2010), pp.107-112.

Google Scholar

[6] T. Mikolajczyk, Indication of Machining Area with the Robot's Camera Using, Applied Mechanics and Materials, vol. 282 , (2013), pp.146-151.

DOI: 10.4028/www.scientific.net/amm.282.146

Google Scholar

[7] T. Mikolajczyk, Robot-Turner. Advanced Materials Research, vol. 463-464, (2012), pp.1682-1685.

DOI: 10.4028/www.scientific.net/amr.463-464.1682

Google Scholar

[8] T. Mikolajczyk, System to Surface Control in Robot Machining. Advanced Materials Research, vol. 463-464 (2012), pp.708-711.

DOI: 10.4028/www.scientific.net/amr.463-464.708

Google Scholar

[9] T. Mikolajczyk, Videooptical Surface Shape and Integrity Estimation in Robots Machining, Applied Mechanics and Materials, vol. 332, (2013), pp.431-436.

DOI: 10.4028/www.scientific.net/amm.332.270

Google Scholar

[10] T. Mikolajczyk, P. Wasiak, Machining with Image Recognition Using Industrial Robot. Applied Mechanics and Materials, vol. 186, (2012), pp.50-57.

DOI: 10.4028/www.scientific.net/amm.186.50

Google Scholar

[11] H. Latos, T. Mikolajczyk, Virtual Aid to Design of Geometric and Kinematics Flexible Tools. XII Workshop on Superv. and Diagn. of Mach. Sys. Virtual Manuf., Karpacz, Poland, (2001), pp.145-152.

Google Scholar

[12] F. Ribeiro, J. Norrish, Case Study of Rapid Prototyping using Robot Welding. http: /repositorium. sdum. uminho. pt/bitstream/1822/3083/1/12%20PROBOT~2. pdf.

Google Scholar

[13] T. Mikolajczyk, J. Lewandowski, Kształtowanie przyrostowe z zastosowaniem robota przemysłowego. (Rapid Prototyping Using Industrial Robot. ) Inżynieria i Aparatura Chemiczna, nr 3, (2011), pp.51-57, (in polish).

Google Scholar

[14] Giant Robot Prints Chairs from Ground-Up Refrigerators [Video] http: /www. fastcodesign. com/1662793/giant-robot-prints-chairs-from-ground-up-refrigerators-video?partner=co_newsletter.

Google Scholar

[15] T. Mikołajczyk, P. Milko, Shaping of Polystyrene Foam Products with Industrial Robots. OPTIROB, Predeal, University POLITECHNICA, of Bucharest, (2006), pp.261-264.

Google Scholar

[16] A. Pusthuma, Development of a Novel Robotically Effected Plastic Foam Sculpting System for Rapid Prototyping and Manufacturing http: /ir. canterbury. ac. nz/handle/10092/1209.

Google Scholar

[17] I. Horváth, S. Joris, M. Vergeest, I. Juhász, Finding the Shape of a Flexible Blade for Free-Form Layered Manufacturing of Plastic Foam Objects http: /citeseerx. ist. psu. edu/viewdoc/download?doi=10. 1. 1. 27. 4242&rep=rep1&type=pdf19.

DOI: 10.1115/detc98/dfm-5752

Google Scholar

[18] J. Zhu, R. Tanaka, T. Tanaka, Y. Saito, An 8-Axis Robot Based Rough Cutting System for Surface Sculpturing, The 11th International Conference on Precision Engineering (ICPE), Tokyo, Japan, No. 16-18, (2006-8), pp.139-144.

DOI: 10.1007/1-84628-559-3_23

Google Scholar

[19] H. Latos: Zastosowanie ostrzy o prostoliniowych krawedziach do obrobki powierzchni, (Implementation of Straight Cutting Edges for Surface Machining). Zeszyty naukowe Akademii Techniczno-Rolniczej nr 51, Mechanika 19, Bydgoszcz 1978, (in polish).

Google Scholar

[20] J. Bronsztein, K. Semendaiev K., Matematyka. Poradnik Encyklopedyczny. (Mathematics. Encyclopedic Handbook), PWN Warszawa, wyd. XX, 2004 (in polish).

Google Scholar

[21] H. Latos: Elastycznosc geometryczno-kinematyczna narzedzi skrawajacych, (Geometrics and Kinematics Flexibility of Cutting Tools) . Wydawnictwo Uczelniane Akademii Techniczno-Rolniczej, Bydgoszcz, 1997 (in polish).

Google Scholar

[22] T. Mikolajczyk, L. Kamieniecki, PC Controlled Turning Tool. Applied Mechanics and Materials, vol. 325-326, (2013), pp.1110-1114.

DOI: 10.4028/www.scientific.net/amm.325-326.1110

Google Scholar

[23] T. Mikolajczyk, Modernisation of IRb60 Industrial Robot Steering System. OPTIROB'2007, Predeal, Romania, University POLITEHNICA, of Bucharest, (2007), pp.149-152.

Google Scholar