[1]
B. A. Aminudin, J. E. Oh, J. Y. Lee: Analysis of an In-line Engine Crankshaft under the Firing Condition. Journal of Automobile Engineering, Vol. 219, Part D (2005), pp.345-355.
DOI: 10.1243/095440705x6677
Google Scholar
[2]
B. Christopher, G. Gregory, P. John: Fatigue Crack Initiation and Growth in A517 Submerged Arc Welds under variable Amplitude Loading, International Journal of Fatigue, Vol. 22(9)(2000), pp.799-808.
DOI: 10.1016/s0142-1123(00)00047-5
Google Scholar
[3]
N. Jr, J.C. Brot ,A. Matias: Crack-growth Calculations in 7075-T7351 Aluminum Alloyunder Various Load Spectra Using an Improved Crack-closure Model, Engineering Fracture Mechanics, Vol. 71(16-17)(2004), pp.2347-2363.
DOI: 10.1016/j.engfracmech.2004.01.004
Google Scholar
[4]
M. A. Alfares, A. H. Falah, A. H. Elkholy: Failure Analysis of a Vehicle Engine Crankshaft. Journal of Failure Analysis and Prevention, Vol. 7(2007), p.12–17.
DOI: 10.1007/s11668-006-9006-0
Google Scholar
[5]
T. Motohiro, Y. Katsuji: Influence on Failure of High-speed Diesel Engines by Operational Condition: Report of Survey on Failures of Main Engines of High-speed Ferries. Journal of the Japan Institution of Marine Engineering, Vol. 40(2)(2005).
DOI: 10.5988/jime.40.2_235
Google Scholar
[6]
X. Zhou: Theoretical and Experimental Study on Fatigue Behavior and Reliability of Engine Crankshaft, PhD. Dissertation of Zhejiang university, (2006).
Google Scholar
[7]
X. P. Chen, X. L. Yu, B. W. Ji: Study of Crankshaft Strength based on iSIGHT Platform and DOE Methods, International Conference on Measuring Technology and Mechatronics Automation (ICMTMA2010), Vol. 3, pp.548-551.
DOI: 10.1109/icmtma.2010.290
Google Scholar
[8]
B. Ivo, U. Banerjee, J. E. Osborn: Generalized Finite Element Methods: Main Ideas, Results, and Perspective, International Journal of Computational Methods Vol. 1 (1)(2004), p.67–103.
DOI: 10.1142/s0219876204000083
Google Scholar
[9]
J. He, Z. F. Fu: Modal Analysis, Butterworth-Heinemann Press, (2001).
Google Scholar