Study on the Synthesis of Lithium Titanate Compound as Anode Material for Lithium Ion Battery

Article Preview

Abstract:

Lithium titanate compound, Li4Ti5O12 was prepared by a solid state reaction. The raw material, the calcination time, the atmosphere of the reaction and other conditions were investigated. The crystal structure and the electrochemical performance of the synthesized materials were characterized by X-ray powder diffraction (XRD), laser particle-size distribution measurement (LSD), and electrochemical performance testing. The XRD patterns showed peaks attributable to Li4Ti5O12 phase for the sample prepared by LiOH•H2O, while there was impurity peak in the pattern of the sample prepared by Li2CO3. The precursor was sintered at various times of 12h and 24h at 800 °C. The galvanostatically charge and discharge tests show that the capacity and the cycle performance of the latter is obviously more excellent. The atmosphere of the reaction hasn't exerted a great influence on the performance of the material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2172-2175

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Brousse, P. Fragnaud, R. Marchand, D.M. Schleich, O. Bohnke and K. West: J. Power Sources Vol. 68 (1997), p.412.

DOI: 10.1016/s0378-7753(97)02521-4

Google Scholar

[2] Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen and X. Y. Ji: J. Power Sources Vol. 158 (2006), p.1358.

Google Scholar

[3] G. X. Wang, D. H. Bradhurst, S. X. Dou and H. K. Liu: J. Power Sources Vol. 83 (1999), p.156.

Google Scholar

[4] Y. Hao, Q. Lai, Z. Xu, X. Liu and X. Ji: Solid State Ionics Vol. 176 (2005), p.1201.

Google Scholar

[5] K. Kanamura, T. Chiba and K. Dokko: J. Eur. Ceram. Soc. Vol. 26 (2006), p.577.

Google Scholar

[6] Z. Wen, Z. Gu, S. Huang, J. Yang, Z. Lin and O. Yamamoto: J. Power Sources Vol. 146 (2005), p.670.

Google Scholar

[7] J. Li, Z. Tang and Z. Zhang: Electrochem. Commun. Vol. 7 (2005), p.894.

Google Scholar

[8] C. Fang, L. Rengiu, H. Min, L. Li, R. Wang and D. Zhenghua: Electrochim. Acta Vol. 51 (2005), p.61.

Google Scholar

[9] N. A. Alias, M. Z. Kufian, L. P. Teo, S. R. Majid and A. K. Arof: J. Alloys Compd. Vol. 486 (2009), p.645.

DOI: 10.1016/j.jallcom.2009.07.057

Google Scholar

[10] X. L. Yao, S. Xie, H.Q. Nian and C.H. Chen: J. Alloys Compd. Vol. 465 (2008), p.375.

Google Scholar

[11] X. L. Yao, S. Xie, C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li and S. X. Lu: Electrochim. Acta Vol. 50 (2005), p.4076.

Google Scholar

[12] G.X. Wang, D.H. Bradhurst, S.X. Dou and H.K. Liu: J. Power Sources Vol. 83 (1999), p.156.

Google Scholar

[13] D. Peramunage and K.M. Abraham: J. Electrochem. Soc. Vol. 145 (1998), p.2609.

Google Scholar

[14] T. Yuan, R. Cai, K. Wang, R. Ran, S. Liu and Z. Shao: Ceram. Int. Vol. 35 (2008), p.1757.

Google Scholar

[15] S.H. Ju and Y.C. Kang: J. Phys. Chem. Solids Vol. 70 (2009), p.40.

Google Scholar