Lattice BGK Simulation of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Linearly Variable Temperature and Concentration Gradients

Article Preview

Abstract:

Hydromagnetic double-diffusive convection of a binary gas mixture is simulated by a temperature-concentration latitce Bhatnagar-Gross-Krook (TCLBGK) model in a rectangular enclosure with the top and bottom walls being insulated, while linearly variable temperature or concentration gradient or both are imposed along the left and right walls from the bottom to the top and a uniform magnetic field is applied in x-direction. we take the Prandtl number =1, the Lewis =2, the thermal Raleigh number =105, the Hartmann number =0, 25, 50, the dimensionless heat generation or absorption =0, the aspect ration =2 for the enclosure and the ratio of buoyancy forces =0.8, 1.3. Numerical results are discussed in detail. It is founded that linearly variable temperature and concentration gradients have significant influence on the stratification and direction of streamlines and convection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2414-2427

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Beghein, F. Haghighat and F. Allard: Int. J. Heat Mass Transfer Vol. 35 (1992), p.833.

Google Scholar

[2] R.W. Schmitt: Annu. Rev. Fluid Mech. Vol. 26(1994), p.255.

Google Scholar

[3] A.J. Chamkha, H. Al-Naser: Int. J. Heat Mass Transfer Vol. 45 (2002), p.2465.

Google Scholar

[4] M. Rahman, M. A. R. Sharif: Heat Transfer A Vol. 44 (2003), p.355.

Google Scholar

[5] Y. Kamotani, L.W. Wang, S. Ostrach and H.D. Jiang: Int. J. Heat Mass Transfer Vol. 28(1985), p.165.

Google Scholar

[6] H. Han, T.H. Kuehn: Int. J. Heat Mass Transfer Vol. 34 (1991), p.461.

Google Scholar

[7] I. Hajri, A. Omri and S. Ben Nasrallah: Desalination Vol. 206 (2007), p.579.

Google Scholar

[8] Y.H. Qian, D. d'Humi´eres and P. Lallemand: Europhys. Lett. Vol. 17 (1992), p.479.

Google Scholar

[9] W.W. Yan, Y. Liu, Z.L. Guo and Y.S. Xu: International Journal of Modern Physics C Vol. 17(2006), p.771.

Google Scholar

[10] S. Chen, J. Tlke and M. Krafczyk: International Journal of Heat and Fluid Flow Vol. 31 (2010), p.217.

Google Scholar

[11] S. Chen, G.D. Doolen: Annu. Rev. Fluid Mech. Vol. 30 (1998), p.329.

Google Scholar

[12] Z. Guo, T.S. Zhao: Numer. Heat Transfer, Part B Vol. 47 (2005), p.157.

Google Scholar

[13] P. Lallemand, L.S. Luo: Phy. Rev. E Vol. 68 (2003), p.036706.

Google Scholar

[14] Z. Guo, T.S. Zhao and Y. Shi: Phy. Rev. E Vol. 70 (2004), p.066706.

Google Scholar

[15] K. Qu, C. Shu and Y.T. Chew: Phy. Rev. E Vol. 75 (2007), p.036706.

Google Scholar

[16] Y. Xu, Y. Liu, Y. Xia and F. Wu: Phy. Rev. E Vol. 78 (2008), p.046314.

Google Scholar

[17] Z.L. Guo, Q. Li and C.G. Zheng: Chinese Journal of Computational Physics Vol. 19 (2002), p.483.

Google Scholar

[18] C. Ma: Nonlinear Analysis: Real World Applications , doi: 10. 1016/j. nonrwa. 2008. 07. 006.

Google Scholar

[19] Z. Guo, C. Zheng and B. Shi: Phys. Rev. E Vol. 65 (2002), p.046308.

Google Scholar

[20] Z. L. Guo, C.G. Zheng and B.C. Shi: Chinese Phys. Vol. 11 (2002), p.366.

Google Scholar