Spark Plasma Sintering Behavior of 93W-5.28Ni-1.32Fe-0.4Y2O3 Heavy Alloy Powders

Article Preview

Abstract:

Spark plasma sintering (SPS) method was used to consolidate ultra-fine and mixed 93W-5.28Ni-1.32Fe-0.4Y2O3 (wt pct) powders, and the effects of sintering parameters on the densification degree and the performance of the as-sintered materials were investigated. Results showed that the SPS densification process could be divided into four stages. Compacts were densified rapidly at the stage III and a proper holding time promoted W diffusing into fcc-type Ni-Fe based solution. Heating rate and sintering time had a great influence on densification. When the powders were heated at a rate of 100°C/min to 1230°C and then held for 5min, the density, hardness and transverse rupture strength of the as-sintered material reached the optimum, being 17.18×103kg/m3, 41.4HRC and 935.1MPa, respectively. Its corresponding fracture morphology was characterized as intergranular rupture of W-W, and accompanied with some transgranular cleavage of tungsten grain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2762-2768

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.D. Cai, Y. Li, R.J. Dowding, et al: Rev. Particul. Mater. Vol. 3 (1995), p.71.

Google Scholar

[2] Y. Yu, L.X. Hu, E.D. Wang: Mater. Sci. Eng., A Vol. 435-436 (2006), pp.620-624.

Google Scholar

[3] R.M. German, in: Proceedings of the International Conference on Tungsten and Tungsten Alloys, edtied by A. Bose, R.J. Dowding, MPIF, New Jersey, (1992), p.3.

Google Scholar

[4] G.D. White, W.E. Gurwell: Adv. Powder. Metall. Vol. 1 (1989), pp.355-368.

Google Scholar

[5] S. Raghunathan, D.L. Bourell: P/M Sci. Technol. Briefs Vol. 1(1) (1999), pp.9-14.

Google Scholar

[6] J.L. Fan, B.Y. Huang, X.H. Qu: Trans. Nonferrous Met. Soc. China. Vol. 10(1) (2000), pp.57-59.

Google Scholar

[7] W.E. Gurwell: Tungsten Refract Met-1994, Proc Int. Conf, 1995, 2nd, pp.65-75.

Google Scholar

[8] T.H. Sylvia, H. Thomas and S. Theador: Tungsten Refract Met-1994, Proc Int. Conf, 1995, 2nd, pp.169-176.

Google Scholar

[9] H.J. Ryu, S.H. Hong and W.H. Baek: J. Mater. Process. Technol. 1997, 63(3): 292-297.

Google Scholar

[10] H.J. Ryu, S.H. Hong: Mater. Sci. Eng., A Vol. 363 (2003), pp.179-184.

Google Scholar

[11] G.C. Wu, Q. You and D. Wang: Int. J. Refract. Met. Hard Mater. Vol. 17 (1999), pp.299-304.

Google Scholar

[12] S.H. Hong, S.L. Kang, D.N. Yoon, et al: Metall. Trans. A Vol. 22A (1991), p.1969-(1974).

Google Scholar

[13] S. Park, D.K. Kim, S. Lee, et al: Metall. Mater. Trans. A Vol. 32A (2001), p.2011-(2020).

Google Scholar

[14] Y.Y. Li, X.Q. Li, Y. Long, et al: J. Mater. Sci. Technol. Vol. 22(2) (2006), pp.1-4.

Google Scholar

[15] X.Y. Song, X.M. Liu, J.X. Zhang : J. Am. Ceram. Soc. Vol. 89(2) (2006), pp.494-500.

Google Scholar

[16] S.J. Park, J.M. Martin, J.F. Guo, et al: Metall. Mater. Trans. A Vol. 37A (2006), pp.2837-2848.

Google Scholar

[17] F. Dore, C.L. Martin and C.H. Allibert: Mater. Sci. Eng., A vol. 383 (2004), pp.390-398.

Google Scholar

[18] H.R. de Macedo, A.G.P. da Silva and D.M.A. de Melo: Mater. Lett. vol. 57 (2003), pp.3924-3932.

Google Scholar

[19] J.L. Fan, T. Liu, H.C. Cheng, et al: J. Mater. Process. Technol. Vol. 208 (2008), pp.463-469.

Google Scholar