Microscopic Phase-Field Simulation of the Order-Disorder Transition of Antiphase Domian Boundary Formed between DO22 Phases

Article Preview

Abstract:

The order-disorder transition at antiphase domain boundary (APDB) between DO22 (Ni3V) phases is investigated using the microscopic phase-field model. After the formation of ordered APDB, the order-disorder transition at APDB is happened, and the ordered APDB transforms into a thin disordered phase layer. Accompanied with the enrichment of Ni and Al at the disordered APDB, the second phase L12 nucleates at the order-disorder interface between DO22 phases and grows along the disordered phase layer. The order-disorder transition at the ordered APDB makes the nucleation and growth of the second phase L12 much easier and faster. The disordered phase caused by the order-disorder transition at the APDB can be considered as the transient phase during the precipitation process of L12 phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3736-3740

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Proville and A Finel: Phys. Rev. B Vol. 64(2001), 054104.

Google Scholar

[2] P. Oramus, M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville and W. Pfeiler: Mat. Sci. Eng. A Vol. 365 (2004), p.166.

DOI: 10.1016/j.msea.2003.09.023

Google Scholar

[3] J. Ni and B. L. Gu: Phys. Rev. B Vol. 61(2000), p.8598.

Google Scholar

[4] J. Ni, B. L. Gu, T. Ashino and S. Iwata: J. Chem. Phys. Vol. 61 (2000), p.10272.

Google Scholar

[5] V. Sima: J. Alloys. Comp. Vol. 378(2004), p.44.

Google Scholar

[6] P. Wynblatt and D Chatain: Mat. Sci. Eng. A Vol495 (2008), p.119.

Google Scholar

[7] M. Tang, W. C. Carter, R. M. Cannon: J. Mater. Sci. Vol. 41(2006), p.7691.

Google Scholar

[8] A. Loiseau: Curr. Opin. Solid. State. Mater. Sci. Vol. 1(1996), p.369.

Google Scholar

[9] Y. Mishin, W. J. Boettinger, J. A. Warren and G. B. McFadden: Acta. Mater. Vol. 57(2009), p.3771.

Google Scholar

[10] P. L. Williams and Y. Mishin: Acta. Mater. Vol. 57(2009), p.3786.

Google Scholar

[11] B. Straumal and B. baretzky: Interface. Sci. Vol. 12(2004), p.147.

Google Scholar

[12] D. Chatain, E. Rabkin, J. Derenne and J. Bernardini: Acta. Mater. Vol. 49(2001), p.1123.

Google Scholar

[13] C. A. Becker, Y. Mishin and W. J. Boettinger: J. Mater. Sci. Vol. 43(2008), p.3873.

Google Scholar

[14] P. Keblinski, S. R. Phillpot, D. Wolf and H. Gleiter: Philos. Mag. Lett. Vol. 76 (1997), p.143.

Google Scholar

[15] Y. Wang, D. Banerjee, C. C. Su and A. G. Khachaturyan AG: Acta. Mater. Vol. 46(1998), p.2983.

Google Scholar

[16] M. Tang, W. C. Carter, R. M. Cannon: Phys. Rev. Lett. Vol. 97 (2006), p.075502.

Google Scholar

[17] A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley, New York, (1983).

Google Scholar

[18] R. Poduri and L. Q. Chen: Acta Mater Vol. 46(1998), p.1719.

Google Scholar

[19] H. Zapolsky, C. Pareige, L. Marteau, D. Blavette and Chen: Calphad, Vol. 25(2001), p.125.

DOI: 10.1016/s0364-5916(01)00035-9

Google Scholar

[20] Z. R. Liu, B. L. Gu, H. Gui and X. W. Zhang: Phys. Rev. B. Vol. 59(1999), p.16.

Google Scholar