[1]
Y. Y. ZHAO, A. N. CAI. Fingerprint Image Segmentation Based on Support Vector Machines, Journal of Beijing University of Posts and Telecommunications(Chinese), Vol. 29(2006), pp.38-41.
Google Scholar
[2]
H. Yang, L. Chan, and I. King. Support Vector Machine Regression for Volatile Stock Market Prediction, IDEAL 2002, LNCS 24412(2002), Berlin: Springer-Verlag, pp.391-396.
DOI: 10.1007/3-540-45675-9_58
Google Scholar
[3]
B. J. Chen, M. W. Chang, and C. J. Lin. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001, report for EUNITE competition for Smart Adaptive System(2001). Available: http: /www. eunite. org.
DOI: 10.1109/tpwrs.2004.835679
Google Scholar
[4]
D. Matterra and S. Haykin. Support Vector Machines for Dynamic Reconstruction of a Chaotic System, in Advances in Kernel Methods, B. Schölkopf, C.J.C. Burges, and A.J. Smola Eds., MIT Press(1999), pp.211-241.
DOI: 10.7551/mitpress/1130.003.0018
Google Scholar
[5]
A. Ding, X. Zhao, and L Jiao. Traffic Flow Time Series Prediction Based On Statistics Learning Theory, , the IEEE 5th International Conference on Intelligent Transportation Systems, Proceedings( 2002), pp.727-730.
DOI: 10.1109/itsc.2002.1041308
Google Scholar
[6]
Y.J. Lee, W.F. Hsieh and C.M. Huang. ε-SSVR: A Smooth Support Vector Machine for ε-Insensitive Regression, IEEE Transactions on Knowledge and Data Engineering, Vol. 17 (2005), pp.678-685.
DOI: 10.1109/tkde.2005.77
Google Scholar
[7]
L. Armijo. Minimization of functions having Lipschitz-continuous first partial derivatives, Pacific Journal of Mathematics, Vol. 16 (1966), pp.1-3.
DOI: 10.2140/pjm.1966.16.1
Google Scholar
[8]
D. P. Bertsekas. Nonlinear programming,. Athena Scientific, Belmont, MA, second edition(1999).
Google Scholar
[9]
K. Hotta, M. Inaba and A. Yoshise. A complexity analysis of a smoothing method using CHKS-functions for monotone linear complementarity problems, Computational Optimization and Applications, Vol. 17 (2000), pp.183-201.
Google Scholar
[10]
S. H. Pan, X. S. Li. An efficient algorithm for the smallest enclosing ball problem in high dimensions, Applied Mathematics and Computation, Vol. 172 (2006), p.49–61.
DOI: 10.1016/j.amc.2005.01.127
Google Scholar
[11]
P. M. Murphy and D. W. Aha. UCI machine learning repository, http: /www. ics. uci. edu/~mlearn/MLReposito-ry. html(1996).
Google Scholar
[12]
DELVE. Data for evaluating learning in valid experiments, Kin-family dataset, , http: /www. cs. toronto. edu/~delve/data/kin/desc. html(1996).
Google Scholar