p.3741
p.3746
p.3752
p.3757
p.3762
p.3767
p.3771
p.3776
p.3781
Condenser Fault Diagnosis Based on FNN and Data Fusion
Abstract:
In order to improve the fault diagnosis result of the condenser, one new approach based on the fuzzy neural network and data fusion is proposed in this paper. Firstly, the data from the various sensors can be processed through the specific membership functions. With the fault symptoms and fault types of condenser, the fuzzy neural network is constructed for the primary fault diagnosis. Some likelihood of the neural network outputs is too close to make the correct decision of fault diagnosis. The problem can be solved by the data fusion technology. This method was successfully adopted in the application of condenser fault diagnosis. Compared with the general method of FNN, this approach can enhance the accuracy in the domain of fault diagnosis, especially for reducing the uncertainty in the fault diagnosis.
Info:
Periodical:
Pages:
3762-3766
Citation:
Online since:
December 2010
Authors:
Keywords:
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: