[1]
C.P. Peeger and S.L. Peeger: Security in Computing[M], Prentice-Hall, Upper Saddle River, New Jersey, (2006).
Google Scholar
[2]
W. Diffie, M. Hellman: New directions in cryptography[J], IEEE Transactions on Information Theory, 1976, Vol 11, No. 22(6) pp.644-654.
DOI: 10.1109/tit.1976.1055638
Google Scholar
[3]
I.F. Blake,G. Seroussi and N.P. Smart: Advances in Elliptic Curve Cryptography[M], Cam-bridge University Press, (2005).
Google Scholar
[4]
IEEE P1363a Committee. IEEE P1363a/D9—standard specifications for public key cryptography: Additional techniques[J]. (2001), 2(001).
Google Scholar
[5]
D. Hankerson: Elliptic Curve Discrete Logarithm Problem[M]. Encyclopedia of Cryptography and Security. Springer US, (2011): 397-400.
DOI: 10.1007/978-1-4419-5906-5_246
Google Scholar
[6]
DM. Gordon: A survey of fast exponentiation methods[J]. Journal of algorithms, (1998), 27(1): 129-146.
Google Scholar
[7]
N. Koblitz: Elliptic curve cryptosystems[J]. Mathematics of computation, (1987), 48(177): 203-209.
DOI: 10.1090/s0025-5718-1987-0866109-5
Google Scholar
[8]
K. Eisentrager, K. Lauter and P L. Montgomery: Fast elliptic curve arithmetic and improved Weil pairing evaluation[M]. Topics in cryptology—CT-RSA 2003. Springer Berlin Heidelberg, (2003): 343-354.
DOI: 10.1007/3-540-36563-x_24
Google Scholar
[9]
D. Chudnovsky and G. Chudnovsky: Sequences of numbers generated by addition in formal groups and new primality and factoring tests[J]. Advances in Applied Mathematics, (1987), 7: 385-434.
DOI: 10.1016/0196-8858(86)90023-0
Google Scholar
[10]
M. Ciet,M. joye,K. Lauter and P.L. Montgomery: Trading Inversions for Multiplications in Elliptic Curve Cryptography, Designs, Codes and Cryptography, (2006), 39: 189-206.
DOI: 10.1007/s10623-005-3299-y
Google Scholar