Analysis on the Current and Voltage Control of Photovoltaic Battery Based on MPPT

Article Preview

Abstract:

The maximum power point tracking (MPPT) photovoltaic (PV) system can through the control photovoltaic device to realize voltage or current. However, the existing technical literature, which is not about these two methods how to choose reach a consensus. This paper through the use of current and voltage two different MPPT control strategies: in the perturbation and observation (disturbance observation method) and incremental conductance technology, to this problem made a comparative analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-317

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. C. Cavalcanti, K. C. Oliveira, G. M. S. Azevedo, F. A.S. Neves. Comparative study of maximum power point tracking techniques for photovoltaic systems, Revista Eletrônica de Potência, Brazilian Journal of Power Electronics, vol. 12, no. 2, pp.163-171, (2007).

DOI: 10.18618/rep.2007.2.163171

Google Scholar

[2] T. Esram, P. L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp.439-449, (2007).

DOI: 10.1109/tec.2006.874230

Google Scholar

[3] N. Femia, M. Fortunato, G. Lisi, G. Petrone, G. Spagnuolo, M. Vitelli. Guidelines for the optimization of the P&O technique in grid-connected double-stage photovoltaic systems,. IEEE International Symposium on Industrial Electronics, (2007).

DOI: 10.1109/isie.2007.4374986

Google Scholar

[4] N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli. Optimizing duty-cycle perturbation of P&O MPPT technique, IEEE 35th Power Electronics Specialists Conference, vol. 3, pp.1939-1944, (2004).

DOI: 10.1109/pesc.2004.1355414

Google Scholar

[5] N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, Optimizing sampling rate of P&O MPPT technique,. IEEE 35th Annual Power Electronics Specialists Conference, vol. 3, pp.1945-1949, (2004).

DOI: 10.1109/pesc.2004.1355415

Google Scholar

[6] N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, Optimization of perturb and observe maximum power point tracking method, IEEE Transactions on Power Electronics, vol. 20, no. 4, pp.963-973, (2005).

DOI: 10.1109/tpel.2005.850975

Google Scholar

[7] K. H. Hussein et. Al., Maximum photovoltaic power tracking : an algorithm for rapidly changing atmospheric conditions, IEE Proceedings on Generation, Transmission and Distribution, (1995).

DOI: 10.1049/ip-gtd:19951577

Google Scholar

[8] Syafaruddin, E. Karatepe, T. Hiyama, Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions, IET Renewable Power Generation, vol. 3, no. 2, pp.239-253, (2009).

DOI: 10.1049/iet-rpg:20080065

Google Scholar

[9] M. Miyatake, F. Toriumi, T. Endo, N. Fuji, A novel maximum power point tracker controlling several converters connected to photovoltaic arrays with particle swarm optimization technique, European Conference on Power Electronics and Applications, pp.1-10, (2007).

DOI: 10.1109/epe.2007.4417640

Google Scholar

[10] M. Miyatake, T. Inada, I. Hiratsuka, Hongyan Zhao, H. Otsuka, M. Nakano, Control characteristics of a Fibonaccisearch-based maximum power point tracker when a photovoltaic array is partially shaded, International Power Electronics and Motion Control Conference, IPEMC, vol. 2, pp.816-821, (2004).

Google Scholar

[11] G. Spiazzi, S. Buso, P. Mattavelli, Analysis of MPPT algorithms for photovoltaic panels based on ripple correlation techniques in presence of parasitic components, 10th Brazilian Power Electronics Conference, pp.88-95, (2009).

DOI: 10.1109/cobep.2009.5347738

Google Scholar

[12] T. Esram, J.W. Kimball, P.T. Krein, P.L. Chapman, P. Midya, Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control, IEEE Transactions on Power Electronics, vol. 21, no. 5, pp.1282-1291, (2006).

DOI: 10.1109/tpel.2006.880242

Google Scholar

[13] J.W. Kimball, P.T. Krein, Digital ripple correlation control for photovoltaic applications, Power Electronics Specialists Conference, pp.1690-1694, (2007).

DOI: 10.1109/pesc.2007.4342252

Google Scholar

[14] J.W. Kimball and P.T. Krein. Discrete-time ripple correlation control for maximum power point tracking,. IEEE Transactions on Power Electronics, vol. 23, no. 5, pp.2353-2362, (2008).

DOI: 10.1109/tpel.2008.2001913

Google Scholar

[15] M. M. Casaro, D. C. Martins, Modelo de arranjo fotovoltaico destinado a análises em eletrônica de potência via simulação,. Revista Eletrônica de Potência, Brazilian Journal of Power Electronics, vol. 13, no. 3, (2008).

DOI: 10.18618/rep.2008.3.141146

Google Scholar

[16] M. G. Villalva, J. R. Gazoli, E. Ruppert, Comprehensive approach to modeling and simulation of photovoltaic arrays, IEEE Transactions on Power Electronics, vol. 24, pp.1198-1208, (2009).

DOI: 10.1109/tpel.2009.2013862

Google Scholar

[17] M. G. Villalva, J. R. Gazoli, E. Ruppert. Modeling and circuit-based simulation of photovoltaic arrays., Revista Eletrônica de Potência, Brazilian Journal of Power Electronics, vol. 14, pp.35-45, (2009).

DOI: 10.18618/rep.2009.1.035045

Google Scholar

[18] L. C. G. Lopes, Sistema experimental fotovoltaico de geração de energia elétrica operando em paralelo com a rede elétrica CA. Dissertação (Mestrado em Engenharia Elétrica), Universidade Federal de Juiz de Fora, (2006).

DOI: 10.37423/211105008

Google Scholar