[1]
F ENG Wu-feng, WANG Chun-qing, ZHANG Lei. Calculation during material design, a new tendency in material design[J]. Materials Science and Technology, 2000, 8(4): 57-62.
Google Scholar
[2]
LI Qiang, YU Jing-yuan , SUN Xu-dong, LIU Zhi-gang. relationship between process parameters and porosity NiTi alloy using artificial neural network [J]. Materials Science and Technology 2007. 15(3): 316-318.
Google Scholar
[3]
WANG Mei, WANG Zhuo, WANG Jie. Research on ANN-Based Machining Operation Selection for Rotational Parts [J]. Journal of University of Electronic Science and Technology of China 2010, 39(3)470-474.
Google Scholar
[4]
DOU Liu-ming, LIAO Ning-fang, WU Wen-min. The research of computer color matching of powder paints using BP neural networks [J]. Optical Technique 2008, 34(1)116-119.
Google Scholar
[5]
Cao Yibo, Xie Xiaopeng . Wear Loss Prediction Using Least Square Support Vector Machine [J]. Lubrication Engineering [J]. 2007, 32(2): 138-141.
Google Scholar
[6]
Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000: 24−46.
DOI: 10.1017/cbo9780511801389
Google Scholar
[7]
Wu C H, Tzeng G H, Lin R H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression[J]. Expert Systems with Applications. 2009. 36(3): 4725-4735.
DOI: 10.1016/j.eswa.2008.06.046
Google Scholar
[8]
Fang S F, Wang M P, Qi W H, eta1. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials[J]. Computational Materials Science, 2008, 44(2): 647—655.
DOI: 10.1016/j.commatsci.2008.05.010
Google Scholar
[9]
Zhang Xue-gong. On statistical learning theory and support vector machine [J] . ACTA AUTOMATICA SINICA, 2000, 26( 1) : 32 -42.
Google Scholar
[10]
WANG Shu-zhou, SAN Ye. A survey on training algorithms for support vector machine [ J] . CAAL Transactions on Intelligent Systems, 2008, 3( 6) : 467 -475.
Google Scholar
[11]
Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers [ C] / / Proceedings of the 5th Annual ACM Workshop on Computational Learning Theo ry. Pittsburg h, PA, 1992: 144-152.
DOI: 10.1145/130385.130401
Google Scholar
[12]
Zhou W D,Zhang L,Jiao L C. Adaptive support vector machine multi-user detection[J]. Electronic Journals,2002,31( 1) : 1-6.
Google Scholar
[13]
Yu Q X,Wang K. Study on pattern and control of gasemission at coal face in China[J]. Journal of China University of Mining & Technology,2000,1( 1) : 9-14.
Google Scholar
[14]
Chang C C, Lin C J. Training v-support vector classifiers: theory and algorithms[J].Neural Computation, 2001, 13( 9) : 2119-2147.
DOI: 10.1162/089976601750399335
Google Scholar
[15]
Chi W H,Chi J L. A simple decomposition method for support vector machines[J]. Machine Learning, 2002, 1( 46) : 291-314.
Google Scholar