Numerical Simulation of the Dynamics of Heart Valves: A Literature Review

Article Preview

Abstract:

Imaging techniques allow the visualization of the heart valves, but do not yields any information regarding the load applied to the heart valve information that provides key clues to the cause of valve deterioration. Numerical simulation, which is able to replicate and understand the dynamics of the valve, would benefit studies on heart valves surgical repair and prostheses design. Modeling and simulation of heart valves dynamics is a challenging biomechanical problem. Many researchers have taken various approaches to model the heart valve. But systematical categorization and development tendency of their research have never been discussed before. This paper reviews their models and divides them into wet models or dry models, in the light of whether considering blood flow and valve interaction. These simulations also can be categorized as native heart valve or artificial heart valve simulation by a different model prototype. The critical issues for future research are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1211-1217

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S. Anatomy: The anatomical basis of medicine and surgery. ed. 38. (Churchill Livingston, London 2004).

Google Scholar

[2] K. Lobo, Finite element modeling of the natural aortic valve. University of Ottawa (2009).

Google Scholar

[3] K. D. Lau, V. Diaz, P. Scambler, G. Burriesci: Medical Engineering & Physics Vol. 32 (2010), pp.1057-1064.

Google Scholar

[4] H. Mohammadi, Design and simulation of mechanical heart valve prostheses. The University of Western Ontario (2009).

Google Scholar

[5] M. Grigioni et al.: ASAIO Journal Vol. 51 (2005), pp.176-183.

Google Scholar

[6] Y. Yokoyama et al.: The International journal of artificial organs Vol. 29 (2006), pp.1132-1139.

Google Scholar

[7] L. Ge, S. C. Jones, F. Sotiropoulos, T. M. Healy, A. P. Yoganathan: Journal of biomechanical engineering Vol. 125 (2003), pp.709-718.

Google Scholar

[8] A. E. Turcu et al.: Investigations of the thrombogenic and cavitational potentials of a bileaflet mechanical heart valve, using ANSYS-CFX. L. S. I. Miclea, Ed., 2008 Ieee International Conference on Automation, Quality and Testing, Robotics (2008).

DOI: 10.1109/aqtr.2008.4588892

Google Scholar

[9] G. Flueras et al., paper presented at the International Conference on Advancements of Medicine and Health Care through Technology, Cluj-Napoca, (2007).

Google Scholar

[10] D. Rafiroiu et al., paper presented at the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing (2007).

Google Scholar

[11] A. Redaelli et al.: Journal of Heart Valve Disease Vol. 13 (2004), pp.804-813.

Google Scholar

[12] R. Cheng, Y. G. Lai, K. B. Chandran: Annals of Biomedical Engineering Vol. 32 (2004), pp.1471-1483.

Google Scholar

[13] K. Dumont, J. Vierendeels, P. Segers, G. J. Van Nooten, P. R. Verdonck: J Heart Valve Dis Vol. 14 (2005), pp.393-399.

Google Scholar

[14] O. Pelliccioni, M. Cerrolaza, M. Herrera: Mathematics and Computers in Simulation Vol. 75 (2007), pp.1-14.

Google Scholar

[15] C. Muraleedharan, G. Bhuvaneshwar. (IEEE, 1995), p.3/52-53/53.

Google Scholar

[16] P. Johansen: Expert review of medical devices Vol. 1 (2004), pp.95-104.

Google Scholar

[17] M. Leat, J. Fisher: Journal of biomedical engineering Vol. 15 (1993), pp.516-520.

Google Scholar

[18] M. Herold, H. Lo, H. Reul: Polyurethanes in Biomedical Engineering. II (1986), pp.231-256.

Google Scholar

[19] J. Fisher, A. Fisher, M. Evans, D. Wheatley: Proceedings of Progress in Bioengineering, Bristol (1988), pp.238-244.

Google Scholar

[20] J. Mercer, M. Benedicty, H. Bahnson: The Journal of thoracic and cardiovascular surgery Vol. 65 (1973), pp.511-518.

DOI: 10.1016/s0022-5223(19)40727-7

Google Scholar

[21] M. Leat, J. Fisher: Medical Engineering & Physics Vol. 16 (1994), pp.470-476.

Google Scholar

[22] Q. Yuan, C. Zhang, X. Chen, X. Wang, in Icmit 2007: Mechatronics, Mems, and Smart Materials, Pts 1 and 2, M. S. G. C. L. Z. I. R. K. H. X. F. Sasaki, Ed. (2008), vol. 6794, pp. D7943-D7943.

Google Scholar

[23] Y. Li, Z. Kuang: Chinese Journal of Theoretical and Applied Mechanics Vol. 28 (1996), pp.620-626.

Google Scholar

[24] M. Zhang, J. Zheng: Chinese Journal of Applied Mechanics Vol. 21 (2004), pp.119-121.

Google Scholar

[25] R. Nallamothu et al., (2011).

Google Scholar

[26] V. Díaz-Zuccarini, D. Rafirou, D. Hose, P. Lawford, A. Narracott: Computational Science–ICCS 2007 (2007), pp.794-801.

DOI: 10.1007/978-3-540-72584-8_105

Google Scholar

[27] V. Díaz-Zuccarini, D. Hose, P. Lawford, A. Narracott, D. Rafiroiu: International Journal for Multiscale Computational Engineering Vol. 6 (2008).

Google Scholar

[28] K. Kunzelman, K. Cochran: ASAIO Journal Vol. 36 (1990), p. M405-408.

Google Scholar

[29] E. Votta et al.: The Annals of thoracic surgery Vol. 84 (2007), pp.92-101.

Google Scholar

[30] V. Prot, B. Skallerud: Computational Mechanics Vol. 43 (2009), pp.353-368.

Google Scholar

[31] K. Kunzelman et al.: The Journal of heart valve disease Vol. 2 (1993), pp.326-340.

Google Scholar

[32] E. Votta et al.: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 366 (2008), pp.3411-3434.

Google Scholar

[33] D. R. Einstein et al.: International Journal for Numerical Methods in Biomedical Engineering Vol. 26 (2010), pp.348-380.

Google Scholar

[34] K. Kunzelman, D. R. Einstein, R. Cochran: Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 362 (2007), pp.1393-1406.

Google Scholar

[35] V. Prot, B. Skallerud, G. Sommer, G. Holzapfel: Journal of the mechanical behavior of biomedical materials Vol. 3 (2010), pp.167-177.

Google Scholar

[36] M. Thubrikar, W. C. Piepgrass, T. W. Shaner, S. P. Nolan: American Journal of Physiology-Heart and Circulatory Physiology Vol. 241 (1981), pp. H795-H801.

DOI: 10.1152/ajpheart.1981.241.6.h795

Google Scholar

[37] M. Nicosia, R. Cochran, D. Einstein, C. Rutland, K. Kunzelman: The Journal of heart valve disease Vol. 12 (2003), pp.781-789.

Google Scholar

[38] J. De Hart, F. Baaijens, G. Peters, P. Schreurs: Journal of biomechanics Vol. 36 (2003), pp.699-712.

Google Scholar

[39] K. S. Kunzelman, K. J. Grande, T. E. David, R. Cochran, E. D. Verrier: The Journal of thoracic and cardiovascular surgery Vol. 107 (1994), pp.162-170.

DOI: 10.1016/s0022-5223(94)70465-1

Google Scholar

[40] C. Carmody, G. Burriesci, I. Howard, E. Patterson: Journal of biomechanics Vol. 39 (2006), pp.158-169.

Google Scholar

[41] K. J. Grande, R. P. Cochran, P. G. Reinhall, K. S. Kunzelman: Annals of Biomedical Engineering Vol. 26 (1998), pp.534-545.

DOI: 10.1114/1.122

Google Scholar

[42] E. Votta et al.: The Journal of heart valve disease Vol. 11 (2002), pp.810-822.

Google Scholar

[43] K. Lau, V. Díaz-Zuccarini, P. Scambler, G. Burriesci: Journal of biomechanics (2011), pp.2409-2417.

DOI: 10.1016/j.jbiomech.2011.06.030

Google Scholar

[44] S. Schievano et al.: J. Heart Valve Disease Vol. 18 (2009), pp.28-34.

Google Scholar

[45] K. Kunzelman et al.: The Journal of heart valve disease Vol. 2 (1993), pp.236-244.

Google Scholar

[46] K. H. Lim, J. H. Yeo, C. Duran: J Heart Valve Dis Vol. 14 (2005), pp.386-392.

Google Scholar

[47] D. Einstein, K. Kunzelman, P. Reinhall, M. Nicosia, R. Cochran: Medical and Biological Engineering and Computing Vol. 42 (2004), pp.832-846.

DOI: 10.1007/bf02345218

Google Scholar

[48] V. Prot, R. Haaverstad, B. Skallerud: Biomechanics and modeling in mechanobiology Vol. 8 (2009), pp.43-55.

Google Scholar

[49] G. Burriesci, I. Howard, E. Patterson: Journal of Medical Engineering & Technology Vol. 23 (1999), pp.203-215.

Google Scholar