[1]
Yeoh, G. H., & Yuen, R. K. K.
Google Scholar
[2009]
Computational Fluid Dynamics in Fire Engineering. Annals of Physics (Vol. 54, p.532). MIT Press. Retrieved from http: /www. mendeley. com/research/no-title-avail.
Google Scholar
[2]
Sodja, J.
Google Scholar
[2007]
Turbulence models in CFD. University of Ljubljana.
Google Scholar
[3]
Merci, B., & Van Maele, K.
Google Scholar
[2005]
Influence of the turbulence model in numerical simulations of fire in a ventilated horizontal tunnel. Proceedings of the European Combustion Meeting 2005 (pp.1-6).
Google Scholar
[4]
Cheung, S. C. P., and Yeoh, G. H.
Google Scholar
[2009]
A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire, International Journal of Thermal Sciences, Vol. 48, pp.2187-2202.
DOI: 10.1016/j.ijthermalsci.2009.04.011
Google Scholar
[5]
Moss, J., Stewart, C. & K.J., Y. 1995 Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combust. Flame 101, 491–500.
DOI: 10.1016/0010-2180(94)00233-i
Google Scholar
[6]
Hägglund, B., Nireus, K., and Werling, P.
Google Scholar
[1996]
Effects of Inlets on Natural Fire Vents: An Experimental Study. Stockholm, Sweden.
Google Scholar
[7]
Chow, W. K., Chow, C. L., and Li, S. S.
Google Scholar
[2011]
Simulating Smoke Filling in Big Halls by Computational Fluid Dynamics. Modelling and Simulation in Engineering, Article ID 781252, 16 pages.
Google Scholar
[8]
Cheung, S. C. P., Yeoh, G. H., Cheung, a L. K., Yuen, R. K. K. and Lo, S. M.
Google Scholar
[2007]
Flickering Behavior of Turbulent Buoyant Fires Using Large-Eddy Simulatio, Numerical Heat Transfer, Part A: Applications, Vol. 52, pp.679-712.
DOI: 10.1080/10407780701347713
Google Scholar
[9]
Smagorinsky J.
Google Scholar
[1963]
General circulation experiment with the primitive equations: Part I. The Basic Experiment, Monthly Weather Review, 91: 99.
Google Scholar
[10]
Erlebacher, G., Hussaini, M. Y., Speziale, C. G. & Zang, T.
Google Scholar
[1992]
Toward thelarge-eddy simulation of compressible turbulent flows. J. Fluid Mech. 238, 155–185.
Google Scholar
[11]
Nicoud, F. And Ducros, F.
Google Scholar
[1999]
Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion, 62, 183-200.
Google Scholar
[12]
Westbrook, C.K., and Dryer, F. L.
Google Scholar
[1981]
Simplified reaction mechanism for the oxidation of hydrocarbon fuels in flames, J. Combust. Sci. Technol., 27, 31-43.
Google Scholar
[13]
Jimenez, C., Ducros, F., Cuenot, B., and Bedat, B.
Google Scholar
[2001]
Subgrid scale variance and dissipation of a scalar field in large eddy simulations. Physics of Fluids 13, 1748.
DOI: 10.1063/1.1366668
Google Scholar
[14]
Bilger R. W.
Google Scholar
[1977]
Reaction rates in diffusion flames, Combust. Flame, Vol. 30, pp.277-284.
Google Scholar
[15]
Moss, J.B., Stewart, C., Syed, K.
Google Scholar
[1988]
Flowfield modelling of soot formation at elevated pressure. In: 22nd International Symposium on Combustion, pp.413-423.
DOI: 10.1016/s0082-0784(89)80048-7
Google Scholar
[16]
Syed, K., Stewart, C., Moss, J.B., 1990. Modelling soot formation and thermal radiation in buoyant turbulentdiffusion ¯flames. In: 23rd International Symposium on Combustion, pp.1533-1541.
DOI: 10.1016/s0082-0784(06)80423-6
Google Scholar
[17]
Jamaluddin, S., and Smith, P. J.
Google Scholar
[1988]
Predicting Radiative Transfer in Rectangular Enclosures Using the Discrete Ordinates Method, Combustion Science and Technology, Vol. 59, pp.321-340.
DOI: 10.1080/00102208808947103
Google Scholar
[18]
Beer, J. M., Foster, P. J. and Siddall, R. G.
Google Scholar
[1971]
Calculation Methods of Radiative Heat Transfer, HFTS Design Report No. 22, AEA Technology.
Google Scholar
[19]
Kent, J. h. and Honnery, D. R.
Google Scholar
[1990]
A soot formation rate map for a laminar ethylene diffusion flame, Combust. Flame, Vol. 79, pp.287-299.
DOI: 10.1016/0010-2180(90)90140-m
Google Scholar