[1]
Shan, X., Yuan X.F., and Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, Journal of Fluid Mechanic. 550 (2006) 413-441.
DOI: 10.1017/s0022112005008153
Google Scholar
[2]
Chen, S. and Doolen, G., Lattice Boltzmann method for fluid flows, Annual Review Fluid Mechanics. 30 (1998) 329-364.
DOI: 10.1146/annurev.fluid.30.1.329
Google Scholar
[3]
Buick, J.M., Greated, C. A., and Campbell, D.M., Lattice BGK simulation of sound waves, Europhys. Lett. 43 (1998) 235-240.
DOI: 10.1209/epl/i1998-00346-7
Google Scholar
[4]
Dellar, P.J., Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E. 64 (2001) 031203.
DOI: 10.1103/physreve.64.031203
Google Scholar
[5]
Brés G. A., Perot F. and Freed D., Properties of the lattice-Boltzmann method for acoustics, AIAA Paper 2009-3395, (2009).
Google Scholar
[6]
Marié S., Ricot D. and Sagaut P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, Journal of Computational Physics. 228 (2009) 1056-1070.
DOI: 10.1016/j.jcp.2008.10.021
Google Scholar
[7]
Li Xm, Leung R., and So RMC, One-step aeroacoustics simulation using lattice Boltzmann method, AIAA Journal. 44 (2006) 78-89.
DOI: 10.2514/1.15993
Google Scholar
[8]
Kam E.W.S., So R.M.C., and Leung R.C.K., Lattice Boltzmann method simulation of aeroacousitcs and nonreflecting boundary conditions, AIAA Journal. 45 (2007) 1703-1712.
DOI: 10.2514/1.27632
Google Scholar
[9]
Guo ZL, Zheng CG, Shi BC, Non-equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method, Chinese Physics. 11 (2002) 366-374.
DOI: 10.1088/1009-1963/11/4/310
Google Scholar
[10]
Bhatnagar, P., Gross, E.P., and Krook, M.K., A model for collision processes in gases, 1. small amplitude processes in charged and neutral one-component systems, Physics Review. 94(1954) 515-525.
DOI: 10.1103/physrev.94.511
Google Scholar
[11]
Chapman, S. and Cowling, T., The mathematical theory of non-uniform gases, Cambridge University Press, (1990).
Google Scholar
[12]
He X. and Luo L-S, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E. 56 (1997) 6811-6817.
DOI: 10.1103/physreve.56.6811
Google Scholar
[13]
Doolan C.J., Flat-plate interaction with the near wake of a square cylinder. AIAA Journal. 47 (2009) 475-478.
DOI: 10.2514/1.40503
Google Scholar
[14]
Sohankar A., Norberg C., Davidson L., Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, International Journal of Numerical Methods in Fluids. 26 (1998).
DOI: 10.1002/(sici)1097-0363(19980115)26:1<39::aid-fld623>3.0.co;2-p
Google Scholar
[15]
Ali M. S. M., Doolan C.J., Wheatley V., The sound generated by a square cylinder with a splitter plate at low Reynolds number, Journal of Sound and Vibration. 330 (2011) 3620-3635.
DOI: 10.1016/j.jsv.2011.03.008
Google Scholar
[16]
Okajima A., Strouhal numbers of rectangular cylinders, Journal of Fluid Mechanics. 123 (1982) 379-398.
DOI: 10.1017/s0022112082003115
Google Scholar