Numerical Investigation of the Compressible Flat-Plate Turbulent Boundary Layer with Extended GAO-YONG Turbulence Model

Article Preview

Abstract:

The extended GAO-YONG turbulence model is used to simulate the flow and heat transfer of flat-plate turbulent boundary layer, and the results indicate that GAO-YONG turbulence model may well describe boundary layer flow and heat transfer from near-wall region to far outer area, without using any empirical coefficients and near-wall treatments, such as wall-function or modified low Reynolds number model, which are used widely in all RANS turbulence models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

416-422

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Defraeye T, Blocken B, Koninckx E, Hespel P, Carmeliet J. CFD analysis of cyclist aerodynamics: Performance of different turbulence-modelling and boundary-layer modelling approaches., J. Biomechanics, Vol. 43, August 2010, p.2281–2287.

DOI: 10.1016/j.jbiomech.2010.04.038

Google Scholar

[2] G. Kalitzin, G. Medic, G. Iaccarino and P. Durbin, Near-wall behaviour of RANS turbulence models and implication for wall functions, J. Comput. Phys, Vol. 204, 2005, p.265–291.

DOI: 10.1016/j.jcp.2004.10.018

Google Scholar

[3] Launder BE, Spalding DB. The numerical computation of turbulent flows, Compute Method Appl M Eng, Vol. 3, 1974, pp.269-289.

Google Scholar

[4] T. Defraeye, B. Blocken, J. Carmeliet, An adjusted temperature wall function for turbulent forced convective heat transfer for bluff bodies in the atmospheric boundary layer, Building and Environment. Vol. 46, 2011, pp.2130-2141.

DOI: 10.1016/j.buildenv.2011.04.013

Google Scholar

[5] S.V. Utyuzhnikov, The method of boundary condition transfer in application to modeling near-wall turbulent flows, Computers & Fluids vol 35, 2006, p.1193–1204.

DOI: 10.1016/j.compfluid.2005.05.005

Google Scholar

[6] Patankar SV, Spalding DB. Heat and mass transfer in boundary layers, London: Morgan-Grampian Press; (1967).

Google Scholar

[7] T. Defraeye, B. Blocken and J. Carmeliet, CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer, Int J Heat Mass Trans, Vol. 53, 2010, p.297–308.

DOI: 10.1016/j.ijheatmasstransfer.2009.09.029

Google Scholar

[8] W. Vieser, T. Esch, F. Menter. Heat Transfer Predictions using Advanced Two-Equation Turbulence Models, CFX Technical Memorandum, (2002).

Google Scholar

[9] Bredberg J, Peng S-H, Davidson L. On the wall boundary conditions for computing turbulent heat transfer with K–ω models, In: Kim JH, editor. Proceedings of the ASME heat transfer division, 5–10 November 2000, Orlando, USA, Vol. 5. p.243–50.

DOI: 10.1115/imece2000-1582

Google Scholar

[10] Ge Gao. Yan Yong, Partial-average-based equations of incompressible turbulent flow. International Journal of Non-Linear Mechanics, Vol. 39, 2004, pp: 1407-1419.

DOI: 10.1016/j.ijnonlinmec.2004.02.002

Google Scholar

[11] Chen Guangye, Gao Ge, Yin Xingyu, The Calculation of Incompressible Wall Boundary Layer Using GAO-YONG Turbulence Equations, Journal of aerospace power, Vol. 18, 2003, pp.2-7.

Google Scholar

[12] Gao H, Fu DX, Ma YW, Li XL. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Flow. Chinese Physics Letters, 2005, 22(7): 1709-1712.

DOI: 10.1088/0256-307x/22/7/041

Google Scholar

[13] Jing lei Xu. Research of theory and apply of turbulence model. [D]. Beijing:Graduate University of Chinese Academy of Sciences,(2008).

Google Scholar

[14] Fernholz HH, Finley PJ, A critical compilation of compressible turbulent boundary layer data, AGARDograph 223, Case 55010501, (1977).

Google Scholar

[15] Pirozzoli S, Grasso F, Gatski TB, Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2. 25. Physics of Fluids, 2004, 16(3): 530~545.

DOI: 10.1063/1.1637604

Google Scholar