A 3D Numerical Model for Free Interfacial Flows and Applications to Offshore Waves with Submerged Obstacles

Article Preview

Abstract:

A 3D numerical model for incompressible multi-fluid flows has been developed by using a multi-moment finite volume method and an accurate and efficient VOF type scheme for capturing moving interfaces of multi-fluids. The numerical model is validated with the theoretical and experimental results of the benchmark tests of solitary wave and dam break flow, which indicates the adequate numerical accuracy of the model as a practical tool to assess and predict offshore waves and their impacts on coastal structures. Numerical experiments have been systematically conducted to investigate wave breaking phenomena and the impacts on seawalls.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

544-548

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. T Kleefsman, G. Fekken, A Volume-of-Fluid based simulation method for wave impact problems, J. Comput. Phys., 206 (2005) 363-393.

DOI: 10.1016/j.jcp.2004.12.007

Google Scholar

[2] Y.C. Sue, M.J. Chern, R.R. Hwang, Interaction of nonlinear progressive viscous waves with a submerged obstacle, Ocean Engineering, 32(2005) 893-923.

DOI: 10.1016/j.oceaneng.2004.10.017

Google Scholar

[3] W.H. Mo, K. Irschik, H. Oumeraci, P.L.F. Liu, A 3D numerical model for computing non-breaking wave forces on slender piles, Journal of Engineering Mathematics, 58(2007) 19-30.

DOI: 10.1007/s10665-006-9094-6

Google Scholar

[4] F. Xiao, R. Akoh, S. Ii, Unified formulation for compressible and incompressible flows by using multi integrated moments II: multi-dimensional version for compressible and incompressible flows, J. Comput. Phys., 213(2006) 31-56.

DOI: 10.1016/j.jcp.2005.08.002

Google Scholar

[5] F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Mech. Fluids, 48(2005)1023–1040.

DOI: 10.1002/fld.975

Google Scholar

[6] K. Yokoi, Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm. J. Comput. Phys., 226(2002)1985–(2002).

DOI: 10.1016/j.jcp.2007.06.020

Google Scholar

[7] F. Xiao, S. Ii, C.G. Chen, Revisit to the THINC scheme: A simple algebraic VOF algorithm. J. Comput. Phys., 230(2011)7086–7092.

DOI: 10.1016/j.jcp.2011.06.012

Google Scholar

[8] W. J. Rider, D. B. Kothe, Reconstructing volume tracking, J. Comput. Phys., 141(1998)112–152.

Google Scholar

[9] T.S. Hedges, M.S. Kirkgoz, An experimental study of the transformation zone of plunging breakers, Coastal Engng., 4(1981) 319-333.

DOI: 10.1016/0378-3839(80)90026-5

Google Scholar

[10] S.T. Grilli, I.A. Svendsen, R. Subramanya, Breaking criterion and characteristics for solitary waves on slopes. Journal of waterway, port, costal and ocean engineering, 123(1997) 102-112.

DOI: 10.1061/(asce)0733-950x(1997)123:3(102)

Google Scholar

[11] S.T. Grilli, R. Subramanya, I.A. Svendsen and J. Veeramony, Shoaling of solitary waves on plane beaches, Jounal of wateray port coastal and ocean engineering, 120(1994) 609-628.

DOI: 10.1061/(asce)0733-950x(1994)120:6(609)

Google Scholar