[1]
D.H. Lehmer. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly 92(1985): 449-457.
DOI: 10.1080/00029890.1985.11971651
Google Scholar
[2]
B. Sury, Tianning Wang, and Feng-Zhaen Zhao, Some identities involving of. binomial coefficients[J] , J. integer Sequences, Vol, 7(2004), Article 04. 2. 8.
Google Scholar
[3]
Jin-Hua Yang and Feng-zhen Zhao, Sums involving the inverses of binomial coefficients[J], Journal of integer Sequences , vol, 9(2006), Article 06. 4. 2.
Google Scholar
[4]
S. Amghibech, On sum involving Binomial coefficient [J], Journal of integer sequences , Vol, 10(2007), Article 07. 2. 1.
Google Scholar
[5]
F. -z Zhao and T. Wang. some results for sums of the inverses of binomial coefficients. integers[J]: Electronic . J of combinatorial Number Theory. 1(2005). #A22, (2005).
Google Scholar
[6]
R. Sprugnoli, sums of reciprocals of the central binomial coefficients, integers[J]: Electronic J. combinatorial Number theory . 6(2006), #A27.
Google Scholar
[7]
T. Trif, combinatorial sums and series involving inverses of binomial coefficients, [J] Fibonacci Quarterly, 2000, 38(1): 79-84.
Google Scholar
[8]
J.M. Borwein and R. Girgensohn, evaluation of binomial series, [J], Aequationens Math, 70(2005)25-36.
Google Scholar
[9]
Ji wanhui, Zhang laiping , On series alternated with positive and negative involving reciprocals of binominal coefficients[J]. Pure Mathematics, 2012, 2(4): 192-201.
DOI: 10.12677/pm.2012.24030
Google Scholar
[10]
Ji wanhui, Hei baoli , The series of reciprocals of binomial coefficients constructing by splitting terms [J]. Pure Mathematics, 2013, 3 (1): 18-30.
Google Scholar