New Numerical Quadrature of Integrand with Singularity of 1/r and its Application

Article Preview

Abstract:

A new quadrature method is proposed for numerical integration of integrands with the singularity of 1/r occurring at the computation of stiffness matrix when a singular physical cover is introduced to the numerical manifold method (NMM) for linear fracture problems. The detailed proof is presented, which shows the Jacobian has a factor of r that can be used to eliminate the singularity. Compared with the Duffy transformation, it proves more simple and easier to implement while owning the same precision. A numerical example in elastic fracture by the NMM is presented to illustrate the performance of the proposed method. The result has a good agreement with the reference solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

641-649

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Daux, N. Moes, J. Dolbow, N. Sukumar, T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method, Int J Numer Methods Eng. 48 (2000) 1741-1760.

DOI: 10.1002/1097-0207(20000830)48:12<1741::aid-nme956>3.0.co;2-l

Google Scholar

[2] N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int J Numer Methods Eng. 46 (1999) 131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[3] N. Sukumar, J.H. Prevost, Modeling quasi-static crack growth with the extended finite element method part I: computer implementation, Int J Solids Struct. 40 (2003) 7513-7537.

DOI: 10.1016/j.ijsolstr.2003.08.002

Google Scholar

[4] R. Huang, N. Sukumar, JH Prevost, Modeling quasi-static crack growth with the extended finite element method part II: numerical applications, Int J Solids Struct. 40 (2003) 7539-7552.

DOI: 10.1016/j.ijsolstr.2003.08.001

Google Scholar

[5] T. Belytschko, Y.Y. Liu, Element free Galerkin methods, Int J Numer Methods Eng. 37 (1994) 229-56.

Google Scholar

[6] G.R. Liu, T. Nguyen-Thoi, Smoothed finite element methods, CRC Press, Taylor and Francis Group, New York, (2010).

Google Scholar

[7] T. Strouboulis, I. Babuska, K. Copps, The design and analysis of the generalized finite element method, Comput Methods Appl Mech Eng. 181 (2000a) 43-69.

Google Scholar

[8] T. Strouboulis, K. Copps, I. Babuska, The generalized finite element method: an example of its implementation and illustration of its performance, Int J Numer Methods Eng. 47 (2000b) 1401-1417.

DOI: 10.1002/(sici)1097-0207(20000320)47:8<1401::aid-nme835>3.0.co;2-8

Google Scholar

[9] Strouboulis T, Copps K, Babuska I, The generalized finite element method, Comput Methods Appl Mech Eng. 190 (2001) 4081-4193.

DOI: 10.1016/s0045-7825(01)00188-8

Google Scholar

[10] J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng. 139 (1996) 289-314.

DOI: 10.1016/s0045-7825(96)01087-0

Google Scholar

[11] I. Babuska, J.M. Melenk, The partition of unity method, Int J Numer Methods Eng. 40 (1997) 727-758.

DOI: 10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n

Google Scholar

[12] G.H. Shi, Manifold method of material analysis. In: Trans 9th Army Conf on Applied Mathematics and Computing. Minneapolis: Minnesota; 1991. pp.57-76.

Google Scholar

[13] G.H. Shi, Modeling rock joints and blocks by manifold method. In: Proceedings of the 33rd US Rock Mechanics Symposium. New Mexico: San Ta Fe; 1992. pp.639-48.

Google Scholar

[14] H.H. Zhang, L.X. Li, X.M. An, G.W. Ma, Numerical analysis of 2-D crack propagation problems using the numerical manifold method, Engineering Analysis with Boundary Elements. 34 (2010) 41-50.

DOI: 10.1016/j.enganabound.2009.07.006

Google Scholar

[15] H.H. Zhang, S.Q. Zhang, Extract of stress intensity factors on honeycomb elements by the numerical manifold method, Finite Elements in Analysis and Design. 59 (2012) 55-65.

DOI: 10.1016/j.finel.2012.04.013

Google Scholar

[16] G. W. Ma, X. M. An, H.H. Zhang, L.X. Li, Modeling complex crack problems using the numerical manifold method, Int J Fract. 156 (2009) 21-35.

DOI: 10.1007/s10704-009-9342-7

Google Scholar

[17] G. Fairweather, F.J. Rizzo, D.J. Shippy, Computation of double integrals in the boundary integral equation method, in: R. Vichnevetsky, R.S. Stepleman (Eds. ), Advances in Computer Methods for Partial Differential Equations – III, IMACS Publ., Brussels, Belgium, 1979, pp.331-334.

Google Scholar

[18] M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal. 19 (6) (1982) 1260-1262.

DOI: 10.1137/0719090

Google Scholar

[19] Chinese Aeronautical Establishment, Handbook of the stress intensity factor, Science Press, Beijing, (1993).

Google Scholar