[1]
Daniel Boley, and I. N. Sneddon, A Survey of Matrix Inverse Eigenvalue Problems, Inverse Problems, vol. 3, 1987, p.595–622.
DOI: 10.1088/0266-5611/3/4/010
Google Scholar
[2]
Moody T. Chu, Inverse Eigenvalue Problems: Theory, Algorithms and Applications, Oxford University Press, New York, (2005).
Google Scholar
[3]
J.C. Egana, C. P. Bean, On the Numerical Reconstruction of a Spring-mass System from its Natural Frequencies, Proyecciones, vol. 19, 2000, p.27–41.
Google Scholar
[4]
W. B. Gao, Introduction to the Nonlinear Control Systems, Science Press: Beijing, (1988).
Google Scholar
[5]
G. M. L. Gladwell, Inverse Problems in Vibration, second edition, Kluwer Academic Publishers, Dordrecht, (2004).
Google Scholar
[6]
G.M. L. Gladwell, etc, The Reconstruction of a Tridiagonal System from its Frequency Response at an Interior Point, Inverse Problems, vol. 4, 1988, p.1013–1024.
DOI: 10.1088/0266-5611/4/4/006
Google Scholar
[7]
H. Pickmann, J.C. Egana, R.L. Soto, Two Inverse Eigenproblems for Symmetric Doubly Arrow Matrices, Electronic Journal of Linear Algebra, vol. 18, 2009, pp.700-718.
DOI: 10.13001/1081-3810.1339
Google Scholar
[8]
Z. B. Liu, L. Z. Lu and K. M. Wang, The Properties of Eigenvalues for Symmetric Doubly Arrow Matrices, Proc. 9th International Conference on Matrix Theory and its Applications (ICMTA 2010), World Academic Union, Jul. 2010, pp.57-64.
Google Scholar