[1]
A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences , Academic Press, New York, (1979).
Google Scholar
[2]
P.D. Egleston, T.D. Lenker and S.K. Narayan, The nonnegative inverse eigenvalue problem, Linear Algebra Appl., vol. 379, 2004, pp.475-490.
DOI: 10.1016/j.laa.2003.10.019
Google Scholar
[3]
C. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra, vol. 10, 1981, pp.113-130.
DOI: 10.1080/03081088108817402
Google Scholar
[4]
T.J. Laffey, E. Meehan, A characterization of trace zero nonnegative matrices , Linear Algebra Appl., vol. 302/303, 1999, pp.295-302.
DOI: 10.1016/s0024-3795(99)00099-3
Google Scholar
[5]
R. Loewy, D. London, A note on the inverse eigenvalue problems for nonnegative matrices, Linear and Multilinear Algebra, vol. 6, 1978, pp.83-90.
DOI: 10.1080/03081087808817226
Google Scholar
[6]
H. Mine, Nonnegative Matrices, Wiley, New York, (1988).
Google Scholar
[7]
R. Reams, An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra, vol. 41, 1996, pp.367-375.
DOI: 10.1080/03081089608818485
Google Scholar
[8]
O. Spector, A characterization of trace zero symmetric nonnegative matrices , Linear Algebra Appl., vol. 434, 2011, pp.1000-1017.
DOI: 10.1016/j.laa.2010.10.006
Google Scholar