A Review of the Extended Finite Element for Fracture Analysis of Structures

Article Preview

Abstract:

The extended finite element method (X-FEM) is reviewed and some new developments for fracture analysis of structures is presented. The X-FEM is an extension to the classical finite element method (FEM), using the concepts of partition of unity and meshless approaches. It is specifically designed to improve the performance of the conventional finite element method, while keeping the computational costs at an acceptable level, and avoiding the cumbersome remeshing of FEM in crack propagation problems. The simplicity, flexibility in handling several cracks and crack propagation patterns on a fixed mesh, and the level of accuracy with minimum additional degrees of freedom have transformed X-FEM into the most efficient numerical procedure in the arena of computational fracture mechanics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-102

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-20.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[2] S.E. Benzley, Representation of singularities with isoparametric finite elements, Int. J. Numer. Methods Eng. 8 (1974) 537-45.

DOI: 10.1002/nme.1620080310

Google Scholar

[3] N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131-50.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[4] J. Dolbow, N. Moes, T. Belytschko, Discontinuous enrichment infinite elements with a partition of unity method, Finite Elem. Anal. Des. 36 (2000) 235-60.

DOI: 10.1016/s0168-874x(00)00035-4

Google Scholar

[5] J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, Comput. Meth. Appl. Mech. Eng. 139 (1996) 289-314.

DOI: 10.1016/s0045-7825(96)01087-0

Google Scholar

[6] C. Daux, N. Moes, J. Dolbow, N. Sukumar, T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Methods Eng. 48 (2000) 1741-60.

DOI: 10.1002/1097-0207(20000830)48:12<1741::aid-nme956>3.0.co;2-l

Google Scholar

[7] N. Sukumar, N. Moes, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng. 48 (2000) 1549-70.

DOI: 10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a

Google Scholar

[8] P.M.A. Areias, T. Belytschko, Non-linear analysis of shells with arbitrary evolving cracks using XFEM, Int. J. Numer. Methods Eng. 62 (2005) 384-415.

DOI: 10.1002/nme.1192

Google Scholar

[9] P.M.A. Areias, J.H. Song, T. Belytschko, Analysis of fracture in thin shells by overlapping paired elements, Comput. Methods. Appl. Mech. Eng. 195 (2006) 5343-60.

DOI: 10.1016/j.cma.2005.10.024

Google Scholar

[10] M. Stolarska, D.L. Chopp, N. Moes, T. Belytschko, Modelling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng. 51 (2001) 943-60.

DOI: 10.1002/nme.201

Google Scholar

[11] N. Moes, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-part Ⅰ: mechanical model, Int. J. Numer. Methods Eng. 53 (2002) 2549-68.

DOI: 10.1002/nme.429

Google Scholar

[12] A. Gravouil, N. Moes, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-part Ⅱ: level set update, Int. J. Numer. Methods Eng. 53 (2002) 2569-86.

DOI: 10.1002/nme.430

Google Scholar

[13] N. Sukumar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigur crack propagation, Eng. Fract Mech. 70 (2003) 29-48.

DOI: 10.1016/s0013-7944(02)00032-2

Google Scholar

[14] D.L. Chopp, N. Sukumar, Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method, Int. J. Eng. Sci. 41 (2003) 845-69.

DOI: 10.1016/s0020-7225(02)00322-1

Google Scholar

[15] G. Ventura, E. Budyn, T. Belytschko, Vector level sets for description of propagating cracks in finite elements, Int. J. Numer. Methods Eng. 58 (2003) 1571-92.

DOI: 10.1002/nme.829

Google Scholar

[16] E. Budyn, G. Zi, N. Moes, T. Belytschko, A method for multiple crack growth in brittle materials without remeshing, Int. J. Numer. Methods Eng. 61 (2004) 1741-70.

DOI: 10.1002/nme.1130

Google Scholar

[17] G. Ventura, On the elimination of quadrature subcells for discontinuous functions in the extended finite element method, Int. J. Numer. Methods Eng. 66 (2006) 761-95.

DOI: 10.1002/nme.1570

Google Scholar

[18] D. Holdych, D. Noble, R. Secor, Quadrature rules for triangular and tetrahedral elements with generalized functions, Int. J. Numer. Methods Eng. 73 (2008) 1310-27.

DOI: 10.1002/nme.2123

Google Scholar

[19] G. Ventura, R. Gracie, T. Belytschko, Fast integration and weight function blending in the extended finite element method, Int. J. Numer. Methods Eng. 77 (2009) 1-29.

DOI: 10.1002/nme.2387

Google Scholar

[20] S.E. Mousavi, N. Sukumar, Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput. Meth. Appl. Mech. Eng. 199 (2010) 3237-49.

DOI: 10.1016/j.cma.2010.06.031

Google Scholar

[21] E. Bechet, H. Minnebo, N. Moes, B. Burgardt, Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Int. J. Numer. Methods Eng. 64 (2005) 1033-56.

DOI: 10.1002/nme.1386

Google Scholar

[22] F.L. Staze, E. Budyn, J. Chessa, T. Belytschko, An extended finite element method with higher-order elements for curved cracks, Comput. Mech. 31 (2003) 38-48.

DOI: 10.1007/s00466-002-0391-2

Google Scholar

[23] P. Laborde, J. Pommier, Y. Renard, M. Salaun, High order extended finite element method for cracked domains, Int. J. Numer. Methods Eng. 64 (2005) 354-81.

DOI: 10.1002/nme.1370

Google Scholar

[24] T. Fries, A corrected XFEM approximation without problems in blending elements, Int. J. Numer. Methods Eng. 75 (2007) 503-32.

DOI: 10.1002/nme.2259

Google Scholar

[25] E. Chahine, P. Laborde, Y. Renard, A quasi-optimal convergence result for fracture mechanics with XFEM, C. R. Acad. Sci. Paris. Ser. Ⅰ 342 (2006) 527-32.

DOI: 10.1016/j.crma.2006.02.002

Google Scholar

[26] M. Stern, E.B. Becker, R.S. Dunham, A contour integral computation of mixed-mode stress intensity factor, Int J Fract. 12 (1976) 359-68.

DOI: 10.1007/bf00032831

Google Scholar

[27] C.F. Shih, R.J. Asaro, Elastic-plastic analysis of cracks on bimaterial interfaces: Part Ⅰ-Small scale yielding. J. App. Mech. 55 (1988) 299-316.

DOI: 10.1115/1.3173676

Google Scholar

[28] L. Wu, L.X. Zhang, Y.K. Guo, Extended finite element method for computation of mixed-mode stress intensity factors in three dimensions, Proce. Eng. 31 (2012) 373-80.

DOI: 10.1016/j.proeng.2012.01.1039

Google Scholar

[29] L. Wu, Y.K. Guo, L.X. Zhang, X-FEM Applied to Three-dimensional Curvilinear Crack Front, Adv. Mater. Res. 472 (2012) 1418-25.

DOI: 10.4028/www.scientific.net/amr.472-475.1418

Google Scholar

[30] E. Giner, N. Sukumar, J.E. Tarancon, F.J. Fuenmayor, An Abaqus implementation of the extended finite element method, Eng. Fract. Mech. 76 (2009) 347-68.

DOI: 10.1016/j.engfracmech.2008.10.015

Google Scholar

[31] T. Belytschko, H. Hao Chen, J. Xu, G. Zi, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Methods Eng. 58 (2003) 1873-(1905).

DOI: 10.1002/nme.941

Google Scholar

[32] J. Rethore, A. Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. Numer. Methods Eng. 63 (2005) 631-659.

DOI: 10.1002/nme.1283

Google Scholar

[33] J.H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, Int. J. Numer. Methods Eng. 67 (2006) 868-893.

DOI: 10.1002/nme.1652

Google Scholar

[34] A. Yazid, H. Abdelmadjid, A survey of the extended finite element. Comput Struct. 86 (2008) 1141-51.

Google Scholar

[33] A. Yazid, N. Abdelkader, H. Abdelmadjid, A state-of –art review of the X-FEM for computational fracture mechanics, Appl. Math. Model. 33 (2009) 4269-82.

DOI: 10.1016/j.apm.2009.02.010

Google Scholar