[1]
T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-20.
DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
Google Scholar
[2]
S.E. Benzley, Representation of singularities with isoparametric finite elements, Int. J. Numer. Methods Eng. 8 (1974) 537-45.
DOI: 10.1002/nme.1620080310
Google Scholar
[3]
N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131-50.
DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
Google Scholar
[4]
J. Dolbow, N. Moes, T. Belytschko, Discontinuous enrichment infinite elements with a partition of unity method, Finite Elem. Anal. Des. 36 (2000) 235-60.
DOI: 10.1016/s0168-874x(00)00035-4
Google Scholar
[5]
J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, Comput. Meth. Appl. Mech. Eng. 139 (1996) 289-314.
DOI: 10.1016/s0045-7825(96)01087-0
Google Scholar
[6]
C. Daux, N. Moes, J. Dolbow, N. Sukumar, T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Methods Eng. 48 (2000) 1741-60.
DOI: 10.1002/1097-0207(20000830)48:12<1741::aid-nme956>3.0.co;2-l
Google Scholar
[7]
N. Sukumar, N. Moes, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng. 48 (2000) 1549-70.
DOI: 10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a
Google Scholar
[8]
P.M.A. Areias, T. Belytschko, Non-linear analysis of shells with arbitrary evolving cracks using XFEM, Int. J. Numer. Methods Eng. 62 (2005) 384-415.
DOI: 10.1002/nme.1192
Google Scholar
[9]
P.M.A. Areias, J.H. Song, T. Belytschko, Analysis of fracture in thin shells by overlapping paired elements, Comput. Methods. Appl. Mech. Eng. 195 (2006) 5343-60.
DOI: 10.1016/j.cma.2005.10.024
Google Scholar
[10]
M. Stolarska, D.L. Chopp, N. Moes, T. Belytschko, Modelling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng. 51 (2001) 943-60.
DOI: 10.1002/nme.201
Google Scholar
[11]
N. Moes, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-part Ⅰ: mechanical model, Int. J. Numer. Methods Eng. 53 (2002) 2549-68.
DOI: 10.1002/nme.429
Google Scholar
[12]
A. Gravouil, N. Moes, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets-part Ⅱ: level set update, Int. J. Numer. Methods Eng. 53 (2002) 2569-86.
DOI: 10.1002/nme.430
Google Scholar
[13]
N. Sukumar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigur crack propagation, Eng. Fract Mech. 70 (2003) 29-48.
DOI: 10.1016/s0013-7944(02)00032-2
Google Scholar
[14]
D.L. Chopp, N. Sukumar, Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method, Int. J. Eng. Sci. 41 (2003) 845-69.
DOI: 10.1016/s0020-7225(02)00322-1
Google Scholar
[15]
G. Ventura, E. Budyn, T. Belytschko, Vector level sets for description of propagating cracks in finite elements, Int. J. Numer. Methods Eng. 58 (2003) 1571-92.
DOI: 10.1002/nme.829
Google Scholar
[16]
E. Budyn, G. Zi, N. Moes, T. Belytschko, A method for multiple crack growth in brittle materials without remeshing, Int. J. Numer. Methods Eng. 61 (2004) 1741-70.
DOI: 10.1002/nme.1130
Google Scholar
[17]
G. Ventura, On the elimination of quadrature subcells for discontinuous functions in the extended finite element method, Int. J. Numer. Methods Eng. 66 (2006) 761-95.
DOI: 10.1002/nme.1570
Google Scholar
[18]
D. Holdych, D. Noble, R. Secor, Quadrature rules for triangular and tetrahedral elements with generalized functions, Int. J. Numer. Methods Eng. 73 (2008) 1310-27.
DOI: 10.1002/nme.2123
Google Scholar
[19]
G. Ventura, R. Gracie, T. Belytschko, Fast integration and weight function blending in the extended finite element method, Int. J. Numer. Methods Eng. 77 (2009) 1-29.
DOI: 10.1002/nme.2387
Google Scholar
[20]
S.E. Mousavi, N. Sukumar, Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput. Meth. Appl. Mech. Eng. 199 (2010) 3237-49.
DOI: 10.1016/j.cma.2010.06.031
Google Scholar
[21]
E. Bechet, H. Minnebo, N. Moes, B. Burgardt, Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Int. J. Numer. Methods Eng. 64 (2005) 1033-56.
DOI: 10.1002/nme.1386
Google Scholar
[22]
F.L. Staze, E. Budyn, J. Chessa, T. Belytschko, An extended finite element method with higher-order elements for curved cracks, Comput. Mech. 31 (2003) 38-48.
DOI: 10.1007/s00466-002-0391-2
Google Scholar
[23]
P. Laborde, J. Pommier, Y. Renard, M. Salaun, High order extended finite element method for cracked domains, Int. J. Numer. Methods Eng. 64 (2005) 354-81.
DOI: 10.1002/nme.1370
Google Scholar
[24]
T. Fries, A corrected XFEM approximation without problems in blending elements, Int. J. Numer. Methods Eng. 75 (2007) 503-32.
DOI: 10.1002/nme.2259
Google Scholar
[25]
E. Chahine, P. Laborde, Y. Renard, A quasi-optimal convergence result for fracture mechanics with XFEM, C. R. Acad. Sci. Paris. Ser. Ⅰ 342 (2006) 527-32.
DOI: 10.1016/j.crma.2006.02.002
Google Scholar
[26]
M. Stern, E.B. Becker, R.S. Dunham, A contour integral computation of mixed-mode stress intensity factor, Int J Fract. 12 (1976) 359-68.
DOI: 10.1007/bf00032831
Google Scholar
[27]
C.F. Shih, R.J. Asaro, Elastic-plastic analysis of cracks on bimaterial interfaces: Part Ⅰ-Small scale yielding. J. App. Mech. 55 (1988) 299-316.
DOI: 10.1115/1.3173676
Google Scholar
[28]
L. Wu, L.X. Zhang, Y.K. Guo, Extended finite element method for computation of mixed-mode stress intensity factors in three dimensions, Proce. Eng. 31 (2012) 373-80.
DOI: 10.1016/j.proeng.2012.01.1039
Google Scholar
[29]
L. Wu, Y.K. Guo, L.X. Zhang, X-FEM Applied to Three-dimensional Curvilinear Crack Front, Adv. Mater. Res. 472 (2012) 1418-25.
DOI: 10.4028/www.scientific.net/amr.472-475.1418
Google Scholar
[30]
E. Giner, N. Sukumar, J.E. Tarancon, F.J. Fuenmayor, An Abaqus implementation of the extended finite element method, Eng. Fract. Mech. 76 (2009) 347-68.
DOI: 10.1016/j.engfracmech.2008.10.015
Google Scholar
[31]
T. Belytschko, H. Hao Chen, J. Xu, G. Zi, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Methods Eng. 58 (2003) 1873-(1905).
DOI: 10.1002/nme.941
Google Scholar
[32]
J. Rethore, A. Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. Numer. Methods Eng. 63 (2005) 631-659.
DOI: 10.1002/nme.1283
Google Scholar
[33]
J.H. Song, P.M.A. Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, Int. J. Numer. Methods Eng. 67 (2006) 868-893.
DOI: 10.1002/nme.1652
Google Scholar
[34]
A. Yazid, H. Abdelmadjid, A survey of the extended finite element. Comput Struct. 86 (2008) 1141-51.
Google Scholar
[33]
A. Yazid, N. Abdelkader, H. Abdelmadjid, A state-of –art review of the X-FEM for computational fracture mechanics, Appl. Math. Model. 33 (2009) 4269-82.
DOI: 10.1016/j.apm.2009.02.010
Google Scholar