Color Face Recognition Based on Quaternion Zernike Moment Invariants and Quaternion BP Neural Network

Article Preview

Abstract:

As an active research topic, many algorithms have been presented for face recognition. However, they mainly utilize the monochromatic intensity information. Among a few color face recognition methods, most of them treat the three channels separately. In this paper, a color face image is treated in a holistic manner by using the quaternion theory. We then propose a new algorithm for color face recognition, which uses the quaternion Zernike moment invariants and the quaternion BP neural network for the color face recognition. Experimental results on the Collection of Facial Images (Grimace) database, including major expression variation and considerable variation in head turn and tilt, show that the proposed method is better than the conventional ones in recognition rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1034-1039

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Chellappa, C.L. Wilson, S. Sirohey: Proc. IEEE Vol. 83 (1995), p.705.

Google Scholar

[2] W. Y. Zhao, R. Chellappa, A. Rosenfeld, J. Phillip: ACM Comput. Surv. Vol. 35 (2003), p.399.

Google Scholar

[3] S. J. Sangwine: Electron. Lett. Vol. 32 (1996), p.1979-(1980).

Google Scholar

[4] J. Haddadnia, K. Faez, M. Ahmadi: Int. J. Pattern Recognit. Artif. Intell. Vol. 17 (2003), pp.41-62.

Google Scholar

[5] A. Khotanzad, Y.H. Hong: IEEE Trans. Pattern Anal. Machine Intell. Vol. 12 (1990), pp.489-497.

DOI: 10.1109/34.55109

Google Scholar

[6] C.Y. Yang, J.J. Chou: Aquac. Eng. Vol. 24 (2000), pp.33-57.

Google Scholar

[7] Y.H. Lin, C.H. Chen: Pattern Recognit. Vol. 41 (2008), pp.2413-2421.

Google Scholar

[8] M. Teague: J. Opt. Soc. Am. Vol. 70 (1980), pp.920-930.

Google Scholar

[9] J. Wang, G. Healey: IEEE Trans. Image Process. Vol. 7 (1998), pp.196-203.

Google Scholar

[10] H.S. Kim, H.K. Lee: IEEE Trans. Circ. Syst. Vid. Vol. 13 (2003), pp.766-775.

Google Scholar

[11] C.H. Teh, R.T. Chin: IEEE Trans. Pattern Anal. Machine Intell. Vol. 10 (1988), pp.496-513.

Google Scholar

[12] B.J. Chen, H.Z. Shu, H. Zhang, G. Chen, L.M. Luo, in: Proc. 20th Int. Conf. Pattern Recognition (ICPR2010) (2010), pp.625-628.

Google Scholar

[13] T. Nitta, in: Proc. IEEE Int. Conf. Neural Networks (ICNN'95) Vol. 5 (1995), pp.2753-2756.

Google Scholar

[14] P. Arena, L. Fortuna, L. Occhipinti, M.G. Xibilia, in: Proc. IEEE Int. Symp. Circuit and Systems Vol. 6 (1994), pp.307-310.

Google Scholar

[15] P. Arena, R. Caponetto, L. Fortuna, G. Muscato, M.G. Xibilia: IEICE Trans. Fundam Electron. Comm. Comput. Sci. Vol. E79-A (1996), pp.1682-1688.

Google Scholar

[16] T. Kuqakabe, T. Isoknwa, N. Kouda, N. Matsui, in: Proc. SICE Annual Conf. 2002 (2002), pp.776-779.

Google Scholar

[17] N. Matsui, T. Isokawa, H. Kusamichi, F. Peper, H. Nishimura: J. Intell. Fuzzy Syst. Vol. 15 (2004), pp.149-164.

Google Scholar

[18] H. Kusamichi, T. Isokawa, N. Matsui, Y. Ogawa, K. Maeda, in: Proc. 2nd Int. Conf. Autonomous Robots and Agents (2004), pp.101-106.

Google Scholar

[19] W. R. Hamilton: Elements of Quaternions ( Longmans Green, London 1866).

Google Scholar

[20] T. Suk, J. Flusser, in: Proc. CAIP 2009 (2009), pp.334-341.

Google Scholar

[21] L. Spacek. http: /cswww. essex. ac. uk/mv/allfaces/grimace. html.

Google Scholar

[22] B.J. Chen, H.Z. Shu, H. Zhang, G. Coatrieux, L.M. Luo, J.L. Coatrieux: IEEE Trans. Image Process. Vol. 20 (2011), pp.345-360.

DOI: 10.1109/tip.2010.2062195

Google Scholar

[23] C. W Chong, P. Raveendran, R. Mukundan: Pattern Recognit. Vol. 36 (2003), pp.731-742.

Google Scholar