[1]
Z. H. Chen. Deformed magnesium alloys. Beijing: Chemical Industry Press, (2005).
Google Scholar
[2]
H. L. Ding. Experimental study and numerical simulation of hot deformation behaviors of AZ91 alloy. Shanghai: Shanghai Jiaotong University, (2007).
Google Scholar
[3]
P. L. Mao, Z. Liu, C. Y. Wang. Deformation microstructure of AZ31B magnesium alloy under high strain rate compression, Trans. Nonferrous Met. Soc. China. 19(2009) 816-820.
Google Scholar
[4]
S. Spigarelli, M. Mehtedi, M. Cabibbo, E. Evangelista. Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy, Mater. Sci. Eng. 462(2007)197-201.
DOI: 10.1016/j.msea.2006.03.155
Google Scholar
[5]
Z. Zhang, M. P. Wang, S. M. Li, N. Jiang, H. L. HU. Evolution of microstructure and texture of AZ31 magnesium alloy during hot rolling process, Trans. Nonferrous Met. Soc. China. 20(2010) 1447-1452.
Google Scholar
[6]
M. Y. Zhan. M. Li, J. Li. Investigation of the plastic deformation mechanism and twinning of magnesium alloys, Mater. Review. 25 (2011) 1-6.
Google Scholar
[7]
M. B. Li, Z. W. Zou, K. Hao, M. Y. Zheng. Microstructure evolution of AZ91D magnesium alloy during high temperature compression, Trans. Nonferrous Met. Soc. China. 17(2007) 1042-1046.
Google Scholar
[8]
X. Z. Ding, T. M. Liu, J. Chen, Y. Zhang, L. W. Lu. Effect of twin boundary on static recrystallization of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China. 23(2013)1-8.
Google Scholar
[9]
X. Li, P. Yang, L. Meng, F.E. Cui. Analysis of the static recrystallization at tension twins in AZ31 magnesium alloy, Acta Metal. Sin. 46(2010) 147-154.
DOI: 10.3724/sp.j.1037.2009.00533
Google Scholar
[10]
T.A. Samman, G. Gottstein. Dynamic recrystallization during high temperature deformation of magnesium, Mater. Sci. Eng. 490(2008) 411-420.
DOI: 10.1016/j.msea.2008.02.004
Google Scholar