Mechanical and Microstructural Behaviors of Directionally Solidified Al2O3/Al16Ti5O34 Eutectics

Article Preview

Abstract:

In this work, rods of Al2O3–TiO2 eutectics containing 65 and 60 wt% Al2O3 were grown using the laser floating zone method. Raman spectroscopy was used to determine the phase composition. Creep strength of Al2O3–Al16Ti5O34 (65AT) eutectic at 1500°C has 320 MPa, which is about higher than β–Al2TiO5/Al2O3 (60AT) crystal. Temperature dependence flexure strength, hardness, elasticity and fracture toughness of the Al2O3–Al16Ti5O34 and β–Al2TiO5/Al2O3 crystals were analyzed. The relationship between the microstructure and the mechanical properties were analyzed the 60 and 65AT eutectic crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-229

Citation:

Online since:

November 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Pastor, A. Martín, J.M. Molina-Aldareguía, J. Llorca, P.B. Oliete, A. Larrea, J.I. Pena, V.M. Orera and R. Arenal: J. Eur. Ceram. Soc. Vol. 33 (2013), pp.2579-2586.

DOI: 10.1016/j.jeurceramsoc.2013.03.033

Google Scholar

[2] X.S. Fu, G.Q. Chen, Y.F. Zu, J.T. Luo and W.L. Zhou: Ceram. Int. Vol. 39 (2013), pp.7445-7452.

Google Scholar

[3] J.J. Sha, S. Ochiai, H. Okuda, S. Iwamoto, K. Morishita, Y. Waku, N. Nakagawa, A. Mitani, T. Ishikawa and M. Sato, An image-based microscale simulation of thermal residual stress in DSE oxide ceramic composite (Trans Tech Publication Switzerland 2011).

DOI: 10.4028/www.scientific.net/amr.189-193.1681

Google Scholar

[4] S. Abali, A. Ekerim: High Temp. Mater. Proc. Vol. 32-3 (2013), pp.309-315.

Google Scholar

[5] E.L. Courtright, H.C. Graham, A.P. Katz and R.J. Kerans, Wright Laboratory, Wright Patterson Air Force Base, OH, Report number WL, TR,91,4061. (1992).

Google Scholar

[6] Y. Waku, H. Ohtsubo, N. Nakagawa, H. Yasuda, High temperature characteristics of unidirectionally solidified Al2O3/GAP eutectic composites with a novel microstructure (Trans Tech Publication, Switzerland 2012).

DOI: 10.4028/www.scientific.net/msf.706-709.246

Google Scholar

[7] J. LLorca, V.M. Orera: Prog. Mater. Sci. Vol. 51 (2006), pp.711-809.

Google Scholar

[8] A. Sayir, M.H. Berger and C. Baudín, in: Mechanical Properties and Performance of Engineering Ceramics and Composites, edited by E. Lara–Curzio John Wiley & Sons Inc., Hoboken, NJ, (2005).

Google Scholar

[9] C. Baudín, A. Sayir and M.H. Berger, Failure mechanisms in directionally solidified alumina–titania composites (Trans Tech Publications, Switzerland 2005).

DOI: 10.4028/www.scientific.net/kem.290.199

Google Scholar

[10] C.H. Moore: Trans. Am. Ins. Min. Metal. Pet. Eng. Vol. 184 (1949), p.194.

Google Scholar

[11] S. Hoffmann, S.T. Norberg and M. Yoshimura: J. Solid State Chem. Vol. 178 (2005), pp.2897-2906.

Google Scholar

[12] D.B. Marshall, T. Noma and A.G. Evans: J. Am. Ceram. Soc. Vol. 66 (1983), pp.127-131.

Google Scholar

[13] R.S. Lima, S.E. Kruger, G. Lamouche and B.R. Marple: J. Therm. Spray Techn. Vol. 14 (2005), pp.52-60.

Google Scholar

[14] P. Henry, M.J. Pac, C. Rousselot, M.H. Tuilier: Surf. Coat. Tech. Vol. 223 (2013), pp.79-86.

Google Scholar

[15] J. Wan, M. Zhou, X.S. Yang, C.Y. Dai, Y. Zhang, W.G. Mao, C. Lu: Mat. Sci. Eng. A-Struct. Vol. 581 (2013), pp.140-144.

Google Scholar

[16] T. Scholz, G.A. Schneider, J. Munoz-Saldana, M.V. Swain: Appl. Phys. Lett. Vol. 84 (2004), pp.3055-3057.

Google Scholar

[17] I.J. McColm, Ceramic Hardness, first ed., Plenum Press, New York, (1990).

Google Scholar