[1]
K. Ozeki, H. Aoki, T. Masuzawa, Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film, Appl. Surf. Sci. 256 (2010) 7027-7031.
DOI: 10.1016/j.apsusc.2010.05.018
Google Scholar
[2]
I.M. Pelin, S.S. Maier, G.C. Chitanu, V. Bulacovschi, Preparation and characterization of a hydroxyapatite-collagen composite as component for injectable bone substitute, Mater. Sci. Eng. C 29 (2009) 2188-2194.
DOI: 10.1016/j.msec.2009.04.021
Google Scholar
[3]
S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J-W. Shin, The characteristics of a hydroxyapatite-chitosan-PMMA bone cement, Biomaterials 25 (2004) 5715-5723.
DOI: 10.1016/j.biomaterials.2004.01.022
Google Scholar
[4]
M.C. Chang, C-C. Ko, W.H. Douglas, Preparation of hydroxyapatite-gelatin nanocomposite, Biomaterials 24 (2003) 2853-2862.
DOI: 10.1016/s0142-9612(03)00115-7
Google Scholar
[5]
M.H. Fathi, A. Hanifi, V. Mortazavi, Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder, J. Mater. Process. Technol. 202 (2008) 536-542.
DOI: 10.1016/j.jmatprotec.2007.10.004
Google Scholar
[6]
J.S. Cho, S-H. Rhee, Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol, J. Europ. Ceram. Soc. 33 (2013) 233-241.
DOI: 10.1016/j.jeurceramsoc.2012.08.029
Google Scholar
[7]
X. Li, X. Wang, A. Ito, Y. Sogo, K. Cheng, A. Oyane, Effect of coprecipitation temperature on the properties and activity of fibroblast growth factor-2 apatite composite layer, Mater. Sci. Eng. C 29 (2009) 216-221.
DOI: 10.1016/j.msec.2008.06.012
Google Scholar
[8]
J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int. 38 (2003) 629-633.
DOI: 10.1016/s0272-8842(02)00210-9
Google Scholar
[9]
A. Bigi, E. Boanini, K. Rubini, Hydroxyapatite gels and nanocrystals prepared through a sol-gel process, J. Solid State Chem. 177 (2004) 3092-3098.
DOI: 10.1016/j.jssc.2004.05.018
Google Scholar
[10]
H. Bundela, A. K Bajpai, Desinging of hydroxyapatite gels-gelatin based porous matrix as bone substitute: Correlation with biocompatibility aspects, Express. Polym. Lett. 2 (2008) 201-213.
DOI: 10.3144/expresspolymlett.2008.25
Google Scholar
[11]
T. Goto, I.Y. Kim, K. Kikuta, C. Ohtsuki, Hydroxyapatite formation by solvothermal treatment of α-tricalcium phosphate with water-ethanol solution, Ceram. Int. 38 (2012) 1003-1010.
DOI: 10.1016/j.ceramint.2011.08.023
Google Scholar
[12]
X. Guo, P. Xiao, Effects of solvent on properties of nanocrystalline hydroxyapatite produced from hydrothermal process, J. Eur. Ceram. Soc. 26 (2006) 3383-3391.
DOI: 10.1016/j.jeurceramsoc.2005.09.111
Google Scholar
[13]
F. Nagata, Y. Yokogawa, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, Hydrothermal synthesis of hydroxyapatite crystals in the presence of methanol, J. Ceram. Soc. Jpn. 109 (1995) 70-73.
DOI: 10.2109/jcersj.103.70
Google Scholar
[14]
Y. Yang, F. Ding, J. Wu, W. Hu, W. Liu, J. Liu, X Gu, Development and evaluation of silk-fibroin-based nerve grafts used for peripheral nerve regeneration, Biomaterials 28 (2007) 5526-5535.
DOI: 10.1016/j.biomaterials.2007.09.001
Google Scholar
[15]
T. Tsuchida, J. Kubo, T. Yoshioka, S. Sakuma, T. Takeguchi, W. Ueda, Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst, J. Catal. 259 (2008) 183-189.
DOI: 10.1016/j.jcat.2008.08.005
Google Scholar