Homogeneous Deposition Precipitation Method for Synthesis of Carbon Nanofibre Based Cu-ZrO2 Catalyst for Hydrogenation of CO2 to Methanol

Article Preview

Abstract:

Deposition precipitation method was employed to synthesize carbon nanofiber based Cu-ZrO2 catalyst (Cu-ZrO2/CNF). Carbon nanofibre of herringbone type was used as a catalyst support. Prior deposition of catalyst particles, carbon nanofibre was oxidized to (CNF-O) with nitric acid solution. Catalyst was characterized by X-ray diffraction (XRD), Fourier Transmission Infrared (FTIR), Transmission Electron Microscopy (TEM) and Temperature-Programmed Reduction (TPR). Highly loaded, well-dispersed and thermally stable catalyst particles with average size of 4 nm were obtained by deposition precipitation method. Reaction studies confirmed the activity of the catalyst towards methanol formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-87

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Yang, Z. Ma, N. Zhao, W. Wei, T. Hu, Y. Sun, Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst, Catalysis Today, 115 (2006) 222-227.

DOI: 10.1016/j.cattod.2006.02.077

Google Scholar

[2] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, Journal of Catalysis, 249 (2007) 185-194.

DOI: 10.1016/j.jcat.2007.04.003

Google Scholar

[3] M. -J. Ledoux, C. Pham-Huu, Carbon nanostructures with macroscopic shaping for catalytic applications, Catalysis Today, 102–103 (2005) 2-14.

DOI: 10.1016/j.cattod.2005.02.036

Google Scholar

[4] T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Surface Structure of Untreated Parallel and Fishbone Carbon Nanofibres: An Infrared Study, ChemPhysChem, 3 (2002) 209-214.

DOI: 10.1002/1439-7641(20020215)3:2<209::aid-cphc209>3.0.co;2-s

Google Scholar

[5] M.K. van der Lee, A.J. van Dillen, J.W. Geus, K.P. de Jong, J.H. Bitter, Catalytic growth of macroscopic carbon nanofiber bodies with high bulk density and high mechanical strength, Carbon, 44 (2006) 629-637.

DOI: 10.1016/j.carbon.2005.09.031

Google Scholar

[6] N.M. Rodriguez, M. -S. Kim, R.T.K. Baker, Carbon Nanofibers: A Unique Catalyst Support Medium, The Journal of Physical Chemistry, 98 (1994) 13108-13111.

DOI: 10.1021/j100101a003

Google Scholar

[7] M.S. Hoogenraad, R.A.G.M.M. van Leeuwarden, G.J.B. van Breda Vriesman, A. Broersma, A.J. van Dillen, J.W. Geus, Metal catalysts supported on a novel carbon support, in: J.M.B.D.P.A.J. G. Poncelet, P. Grange (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 1995, pp.263-271.

DOI: 10.1016/s0167-2991(06)81762-3

Google Scholar

[8] D.B. Thakur, R.M. Tiggelaar, T.M.C. Hoang, J.G.E. Gardeniers, L. Lefferts, K. Seshan, Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors, Part I: Preparation and characterization, Applied Catalysis B: Environmental, 102 (2011).

DOI: 10.1016/j.apcatb.2010.12.003

Google Scholar

[9] M.K. van der Lee, J. van Dillen, J.H. Bitter, K.P. de Jong, Deposition Precipitation for the Preparation of Carbon Nanofiber Supported Nickel Catalysts, Journal of the American Chemical Society, 127 (2005) 13573-13582.

DOI: 10.1021/ja053038q

Google Scholar

[10] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A: General, 253 (2003) 337-358.

DOI: 10.1016/s0926-860x(03)00549-0

Google Scholar

[11] T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Surface Oxidation of Carbon Nanofibres, Chemistry – A European Journal, 8 (2002) 1151-1162.

DOI: 10.1002/1521-3765(20020301)8:5<1151::aid-chem1151>3.0.co;2-#

Google Scholar

[12] R.C. Schlogl, M. Clause, O. Marchilly, C., preparation of solid catalysis, in: Wiley-VCH: Weinhein 1999, pp. Chapter 3 and 4.

Google Scholar

[13] M.L. Toebes, M.K. van der Lee, L.M. Tang, M.H. Huis in 't Veld, J.H. Bitter, A.J. van Dillen, K.P. de Jong, Preparation of Carbon Nanofiber Supported Platinum and Ruthenium Catalysts: Comparison of Ion Adsorption and Homogeneous Deposition Precipitation, The Journal of Physical Chemistry B, 108 (2004).

DOI: 10.1021/jp0313472

Google Scholar

[14] J. W. Geus, P. B. Wells, Characterization of the standard platinum/silica catalyst europt-1. 3. the size distribution of the platinum-containing particles, Applied Catalysis, 18 (1985) 231-242.

DOI: 10.1016/s0166-9834(00)84003-8

Google Scholar

[15] L.A.M. Hermans, J.W. Geus, Interaction Of Nickel Ions With Silica Supports During Deposition-Precipitation, in: P.G.P.J. B. Delmon, G. Poncelet (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 1979, pp.113-130.

DOI: 10.1016/s0167-2991(09)60208-1

Google Scholar

[16] K.P. de Jong, Deposition Precipitation Onto Pre-Shaped Carrier Bodies. Possibilities and Limitations, in: P.A.J.P.G. G. Poncelet, B. Delmon (Eds. ) Studies in Surface Science and Catalysis, Elsevier, 1991, pp.19-36.

DOI: 10.1016/s0167-2991(08)64569-3

Google Scholar

[17] A. Chambers, T. Nemes, N.M. Rodriguez, R.T.K. Baker, Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 1. Comparison with Other Support Media, The Journal of Physical Chemistry B, 102 (1998) 2251-2258.

DOI: 10.1021/jp973462g

Google Scholar

[18] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44 (2006) 3342-3347.

DOI: 10.1016/j.carbon.2006.06.004

Google Scholar

[19] F. Salman, C. Park, R.T.K. Baker, Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel, Catalysis Today, 53 (1999) 385-394.

DOI: 10.1016/s0920-5861(99)00132-7

Google Scholar

[20] C. Park, R.T.K. Baker, Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 2. The Influence of the Nanofiber Structure, The Journal of Physical Chemistry B, 102 (1998) 5168-5177.

DOI: 10.1021/jp981210p

Google Scholar

[21] Z. Liu, M.D. Amiridis, Y. Chen, Characterization of CuO Supported on Tetragonal ZrO2 Catalysts for N2O Decomposition to N2, The Journal of Physical Chemistry B, 109 (2005) 1251-1255.

DOI: 10.1021/jp046368q

Google Scholar

[22] M.S. Shaharun, S. Shaharun, N.A.M. Zabidi, M.F. Taha, Effect of zirconia on the physicochemical properties of Cu/ZnO/Al2O3 catalyst, AIP Conf. Proc. 1482 (2012) 117-121.

DOI: 10.1063/1.4757449

Google Scholar

[23] G. Águila, S. Guerrero, P. Araya, Influence of the crystalline structure of ZrO2 on the activity of Cu/ZrO2 catalysts on the water gas shift reaction, Catalysis Communications, 9 (2008) 2550-2554.

DOI: 10.1016/j.catcom.2008.07.011

Google Scholar

[24] A. Karelovic, A. Bargibant, C. Fernández, P. Ruiz, Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions, Catalysis Today, 197 (2012).

DOI: 10.1016/j.cattod.2012.07.029

Google Scholar