The Electronic Band Structure and Vibrational Properties of Cubic BxIn1-xN Alloy

Article Preview

Abstract:

We have performed the electronic and phonon band structures of BxIn1-xN for various concentration of Boron using the pseudopotential method. The electronic band structure calculation was done using the GW approximation while the phonon band structure was done using the density functional perturbation theory. All calculations were done within the frame work of the density functional theory (DFT). From our calculations, the direct band gap for B0.25In0.75N, B0.5In0.5N and B0.75In0.25N were found to be 0.024eV, 2.2 eV and 6.01 eV respectively while the indirect band gap obtained were 0.59 eV, 3.24 eV and 6.9 eV. For the phonon calculations, it was also observed that an increase in the Boron content results in corresponding increase in the frequency of the topmost LO at the zone centre. For B0.25In0.75N, B0.5In0.5N and B0.75In0.25N, the topmost LO obtained were 735 cm-1, 885 cm-1 and 1105 cm-1 respectively. We also saw that as the Boron concentration decreases, the number of optical bands across which the acoustic bands overlap increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-103

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Trampert, O. Brandt and K. H. Ploog, Crystal Structure of Group III Nitrides Semiconductor and Semimetals, 50, (1997) 167-192.

DOI: 10.1016/s0080-8784(08)63088-4

Google Scholar

[2] M. E. Sherwin and T. J. Drummond, Predicted elastic constants and critical layer thicknesses for cubic phase AIN, GaN, and lnN on b-SiC J. Appl. Phys., 69, (1991) 8423-8425.

DOI: 10.1063/1.347412

Google Scholar

[3] J. Serrano, A. Rubio, E. Hernandez, A. Mu˜noz, and A. Mujica,. Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures, Phys. Rev., B, 62, (2000) 16612-16623.

DOI: 10.1103/physrevb.62.16612

Google Scholar

[4] S. Q. Wang and H. Q. Ye, A plane-wave pseudopotential study on III–V zinc-blende and wurtzite semiconductors under pressure Condens. Matter., 14, (2002) 9579-9584.

DOI: 10.1088/0953-8984/14/41/313

Google Scholar

[5] Knittle, R. M. Wentzcovitch, R. Jeanloz and M. L. Cohen, Experimental and theoretical equation of state of cubic boron nitride, Nature (London), 337, (1989) 349-352.

DOI: 10.1038/337349a0

Google Scholar

[6] S. Fahy, Calculation of the strain-induced shifts in the infrared-absorption peaks of cubic boron nitride, Phys. Rev., B 51, (1995) 12873-12876.

DOI: 10.1103/physrevb.51.12873

Google Scholar

[7] R. M. Wentzcovitch, K. J. Chang, and M. L. Cohen, Electronic and structural properties of BN and BP, Phys. Rev., B, 34, (1986) 1071-1079.

DOI: 10.1103/physrevb.34.1071

Google Scholar

[8] K. Kim, W. R. Hambrecht and B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Phys. Rev., B 53, (1996) 16 310-16326.

DOI: 10.1103/physrevb.53.16310

Google Scholar

[9] C. Stampfl and C. G. Van de Walle, (1999). Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev., B 59, 5521-5535.

DOI: 10.1103/physrevb.59.5521

Google Scholar

[10] M. B. Kanoun, A. E. Merad, G. Merad, J. Cebert, H. Aourag, Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN, Solid-State Electronics., 48, (2004) 1601-1606.

DOI: 10.1016/j.sse.2004.03.007

Google Scholar

[11] V. A. Pesin, Sverktverd. Mater., 6, (1980), 5.

Google Scholar

[12] P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Ground State and Electronic Properties of Silicon Carbide and Boron Nitride Phys. Stat. Sol. (b)., 146, (1988) 573-587.

DOI: 10.1002/pssb.2221460218

Google Scholar

[13] P.E. Van Camp, V. E. Van Doren and J. T. Devreese, Pressure dependence of the electronic properties of cubic III-V In compounds Phys. Rev., B, 41, (1990) 1598-1602.

DOI: 10.1103/physrevb.41.1598

Google Scholar

[14] F. Chiker, B. Abbar, B. Bouhafs and P. Ruterana, Interband transitions of wide-band-gap ternary pnictide BeCN2 in the chalcopyrite structure Phys. Stat. Sol. (b), 241, (2004) 305-316.

DOI: 10.1002/pssb.200301881

Google Scholar

[15] D. Ojuh and J. Idiodi, The electronic properties of binary cubic InN, BN, AlN and GaN, Journal of the Nigerian Association of Mathematical Physics, vol. 21, 2012, 413-420.

Google Scholar

[16] S. Labidi, M. Labidi, H. Meradji, S. Ghemid and F. El Haj Hassan, First principles calculations of structural, electronic, optical and thermodynamic properties of PbS, SrS and their ternary alloys Pb1-xSrxS, computational mater. Sci, 50, (2011).

DOI: 10.1016/j.commatsci.2010.11.004

Google Scholar

[17] Ojuh D. O., Idiodi J. O. and Omehe N. N., The Electronic And Structural Properties Of Zincblende B1-xInxN alloy, Journal of the Nigerian Association of Mathematical Physics, 21, (2012).

Google Scholar

[18] A. Lachebi, M. Sehil and H. Abid, First-principles study of cubic BxIn1−xN alloys, Turk J Phys 33 (2009), 325 – 332.

Google Scholar

[19] Gonze X., Beuken J. -M., Caracas R., Detraux F., Fuchs M., Rignanese G. -M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J. -Y., and Allan D.C., First-principles computation of material properties: the Abinit software project, Computational Materials Science 25, (2002).

DOI: 10.1016/s0927-0256(02)00325-7

Google Scholar

[20] Gonze X., Rignanese G. -M., Verstraete M., Beuken J. -M., Pouillon Y., Caracas R., Jollet F., Torrent M., Zerah G., Mikami M., Ghosez Ph., Veithen M., Raty J. -Y., Olevano V., Bruneval F., Reining L., Godby R., Onida G., Hamann D. R., and Allan D. C., A brief Introduction to the Abinit software package. Z. Kristallogr. (2005).

DOI: 10.1016/s0927-0256(02)00325-7

Google Scholar

[21] Mostofi A. A., Yates J. R., Lee Y. -S., Souza I., Vanderbilt D., and Marzari N., Wannier90: A Tool for Obtaining Maximally Localised Wannier Functions, Comput. Phys. Commun. 178, (2008) 685-699.

DOI: 10.1016/j.cpc.2007.11.016

Google Scholar

[22] Marzari N. and Vanderbilt D., Maximally Localized Generalised Wannier Functions for Composite Energy Bands, Phys. Rev. B 56 (1997) 12847-12873.

DOI: 10.1103/physrevb.56.12847

Google Scholar

[23] Souza I., Marzari N. and Vanderbilt D., Maximally Localized Wannier Functions for Entangled Energy Bands, Phys. Rev. B 65 (2001) 035109-035121.

DOI: 10.1103/physrevb.65.035109

Google Scholar

[24] Gonze X., and Lee C., Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, (1997) 10355-10368.

DOI: 10.1103/physrevb.55.10355

Google Scholar

[25] Lee C., and Gonze X., Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite, Phys. Rev. B 51, (1995) 8610-8613.

DOI: 10.1103/physrevb.51.8610

Google Scholar

[26] Baroni S., Gironcoli S, Corso A., and Giannozzi P., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, (2001) 515-562.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[27] G. Kaczmarczyk, A. Kaschner, S. Reich, A. Hoffmann, C. Thomsen, D. J. As, A. P. Lima, D. Schikora, K. Lischka, R. Averbeck and H. Riechert,. Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations Appl. Phys. Lett. 76, (2000).

DOI: 10.1063/1.126273

Google Scholar

[28] K. Karch and F. Bechstedt, Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces, Phys Rev. B 56, (1997) 7404-7415.

DOI: 10.1103/physrevb.56.7404

Google Scholar