[1]
S. Tangwongsan and R. Phoophuangpairoj: Boosting Thai Syllable Speech Recognition Using Acoustic Models Combination, in Proceedings of the International Conference on Computer and Electrical Engineering (2008), pp.568-572.
DOI: 10.1109/iccee.2008.130
Google Scholar
[2]
S. Tangruamsub, P. Punyabukkana and A. Suchato: Thai Speech Keyword Spotting Using Heterogeneous Acoustic Modeling, in Proceedings of the IEEE International Conference on Research, Innovation and Vision for the Future (2007), pp.253-260.
DOI: 10.1109/rivf.2007.369165
Google Scholar
[3]
S. Tangwongsan, P. Po-Aramsri and R. Phoophuangpairoj: Highly Efficient and Effective Techniques for Thai Syllable Speech Recognition, Lecture Notes in Computer Sciences, Vol. 3321 (2004), pp.259-270.
DOI: 10.1007/978-3-540-30502-6_19
Google Scholar
[4]
L. Fuhai, M. Jinwen and D. Huang: MFCC and SVM Based Recognition of Chinese Vowels, Lecture Notes in Computer Science, Vol. 3802 (2005), pp.812-819.
DOI: 10.1007/11596981_118
Google Scholar
[5]
R. Phoophuangpairoj: Using Multiple HMM Recognizers and the Maximum Method to Improve Voice-controlled Robots, in Proceedings of the International Conference on Intelligent Signal Processing and Communication Systems, (2011).
DOI: 10.1109/ispacs.2011.6146111
Google Scholar
[6]
N. Thubthong and B. Kijsirikul: Tone Recognition of Continuous Thai Speech Under Tonal Assimilation and Declination Effects Using Half-tone Model, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 9, No. 6 (2001).
DOI: 10.1142/s0218488501001265
Google Scholar
[7]
T. Lee, W. Lau, Y.W. Wong and P.C. Ching: Using Tone Information in Cantonese Continuous Speech Recognition, ACM Transactions on Asian Language Information Processing (TALIP), Vol. 1, No. 1 (2002), pp.83-102.
DOI: 10.1145/595576.595581
Google Scholar
[8]
H.Q. Nguyen, P. Nocera, et al.: Using tone information for Vietnamese continuous speech recognition, in Proceedings of the International Conference on Research, Innovation and Vision for Future, (2008), pp.103-106.
DOI: 10.1109/rivf.2008.4586340
Google Scholar
[9]
D. Ververidis and C. Kotropoulos: Automatic Speech Classification to Five Emotional States Based on Gender Information, in Proceedings of the European Signal Processing Conference, Vol. 1 (2004), pp.341-344.
DOI: 10.1109/icassp.2004.1326055
Google Scholar
[10]
R. Phoophuangpairoj, S. Phongsuphap and S. Tangwongsan: Gender Identification from Thai Speech Signal Using a Neural Network, Lecture Notes in Computer Science, Vol. 5863 (2009), pp.676-684.
DOI: 10.1007/978-3-642-10677-4_77
Google Scholar
[11]
S.M.R. Azghadi, M. R Bonyadi and H. Sliahhosseini: Gender Classification Based on Feedforward Backpropagation Neural Network, IFIP International Federation for Information Processing, Vol. 247 (2007), pp.299-304.
DOI: 10.1007/978-0-387-74161-1_32
Google Scholar
[12]
M.H. James and J.C. Michael: The Role of F0 and Formant Frequencies in Distinguishing the Voices of Men and Women, Attention, Perception, & Psychophysics, Vol. 71, No. 5 (2009), pp.1150-1166.
DOI: 10.3758/app.71.5.1150
Google Scholar
[13]
H. Ting, Y. Yingchun and W. Zhaohui: Combining MFCC and Pitch to Enhance the Performance of the Gender Recognition, in Proceedings of the 8th International Conference on Signal Processing (2006).
DOI: 10.1109/icosp.2006.345541
Google Scholar
[14]
M. Sigmund: Gender Distinction Using Short Segments of Speech Signal, International Journal of Computer Science and Network Security, Vol. 8, No. 10 (2008), pp.159-162.
Google Scholar
[15]
D. Mitrovic, M. Zeppelzauer and C. Breiteneder: Discrimination and Retrieval of Animal Sounds, in Proceedings of the 12th International Multi-Media Modelling Conference (2006), pp.339-343.
DOI: 10.1109/mmmc.2006.1651344
Google Scholar
[16]
C. Y. Yeo, S.A.R. Al-Haddad. and C.K. Ng: Animal Voice Recognition for Identification (ID) Detection System, in Proceedings of the IEEE 7th International Colloquium on Signal Processing and Its Applications (2011), pp.198-201.
DOI: 10.1109/cspa.2011.5759872
Google Scholar
[17]
G. Guo and Z. Li: Content-based Classification and Retrieval by Support Vector Machines, IEEE Transactions on Neural Networks, Vol. 14 (2003), pp.209-215.
DOI: 10.1109/tnn.2002.806626
Google Scholar
[18]
R. Phoophuangpairoj: Automated Classification of Watermelon Quality Using Non-flicking Reduction and HMM Sequences Derived from Flicking Sound Characteristics, submitted to Journal of Information Science and Engineering (2013).
Google Scholar
[19]
S. Young, et al.: The HTK Book, available from http: /htk. eng. cam. ac. uk.
Google Scholar
[20]
The Hidden Markov Model Toolkit (HTK), software available from: http: /htk. eng. cam. ac. uk.
Google Scholar
[21]
[C. C. Chang and C. J. Lin: LIBSVM: a Library for Support Vector Machines, ACM Transactions on Intelligent Systems and Technology, Vol. 2, Issue 3 (2011), software available from http: /www. csie. ntu. edu. tw/~cjlin/libsvm.
DOI: 10.1145/1961189.1961199
Google Scholar