Investigation on the Effect of Gallium on the Efficiency of CIGS Solar Cells through Dedicated Software

Article Preview

Abstract:

This work reports on the analysis of thin-film copperindiumgalliumdiselenide (CIGS) solar cells by using Solar Cell Capacitance Simulator software (SCAPS). We have modeled a PV device, which consists in a CIGS absorber, a CdS buffer and a ZnO window layer. We have studied the behavior of CIGS absorber as a function of Gallium content by simulating the behavior of CIGS solar cells versus the Ga content in the absorber layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1497-1501

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hanif Ullah, Bernabé Marí and Luis M. Sánchez Ruiz. Modelling and Analyzing Thin-film Solar Cell by SCAPS. (In press).

Google Scholar

[2] R.W. Birkmire, L. Kazmerski. Harnessing the Sun with Thin-Film Photovoltaics, Electrochemical Society International Symposium. Seattle (Washington): NREL 1999, 1-6.

Google Scholar

[3] A. Fahrenbruch, R.H. Bube. Fundamentals of Solar Cells. Academic Press, New York (1983).

Google Scholar

[4] A.O. Pudov, A. Kanevce, H. Al-Thani, J.R. Sites, F.S. Hasoon, F. S. Secondary barriers in CdS–CuIn(1-x)GaxSe2 solar cells. Journal of applied physics, (2005), 97(6), 064901-064901.

DOI: 10.1063/1.1850604

Google Scholar

[5] Marc Burgelman. Simulation programme SCAPS-1D for thin film solar cells. Jan 23, 2013. http: /users. elis. ugent. be/ELISgroups/solar/projects/scaps. html.

Google Scholar

[6] J.N. Duenow, T.A. Gessert, D.M. Wood, T.M. Barnes, M. Young, B. To, T.J. Coutts. (2007).

Google Scholar

[7] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cellsbeyond 20%. Progress In Photovoltaics: Research and Applications 2011. DOI: 10. 1002/pip. 1078 (Presented at 25th EU PVSEC WCPEC-5, Valencia, Spain, 2010).

DOI: 10.1002/pip.1078

Google Scholar

[8] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi. 19. 9%-efficient ZnO/ CdS/CuInGaSe2 solar cell with 81. 2% fill factor. Progress in Photovoltaics: Research and Applications 16(2008), 235–239.

DOI: 10.1002/pip.822

Google Scholar

[9] P. Chelvanathan, M.I. Hossain, N. Amin. Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10 (3) (2010), pp. S387–S391.

DOI: 10.1016/j.cap.2010.02.018

Google Scholar

[10] N. Amin, I.H. Mohammad, C. Puvaneswaran, ASM Mukter Uzzaman, and S. Kamaruzzaman. Prospects of Cu2ZnSnS4 (CZTS) Solar Cells from Numerical Analysis, in 2010 International Conference on Electrical and Computer Engineering (ICECE), pp.730-733.

DOI: 10.1109/icelce.2010.5700796

Google Scholar

[11] Fonash, Stephen. Solar cell device physics. Academic Press, (2010).

Google Scholar

[12] Jenny, Nelson. The Physics of Solar Cells. Imperial College, UK.

Google Scholar