Application Research Progress of the Microbial Sensor

Article Preview

Abstract:

A brief introduction on the forms,working principle and sorts of microbial sensors is given,the application of microbial sensors in the field of biological industry,environmental monitoring and clinical medicine are summarized.The prospects of bioensors are also prognosticated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-29

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.F. D' Souza. Review Microbial Biosensors. Biosensors and Bioelectronics, 2001, 16: 337-353.

Google Scholar

[2] Junhui Zhai, Ruifu Yang. Letters in biotechnology, 2002, 13 (3). In Chinese.

Google Scholar

[3] Pinghui Xie, Ying Liu, Yu Liu, et al. Journal of Transducer Technology, 2001, 20 (6): 4-7. In Chinese.

Google Scholar

[4] Liping Ma, Bin Mao, Bin Liu, et al. Recent Application and Development Tendency of Biosensors, 2001, 20 (6): 4-7. In Chinese.

Google Scholar

[5] Huaili Zheng, Yingkun Gong. Spectroscopy and Spectral Analysis, 2003, 23 (2): 411-413. In Chinese.

Google Scholar

[6] M Campell. Sensor Systems for Environmental Monitoring. Sensor Technologies, 1997, 1: 237.

Google Scholar

[7] Jianlong Wang, Yue Zhang, Hanchang Shi, et al. Biotechnology Information, 2000, 3: 13-18. In Chinese.

Google Scholar

[8] Tizzard A, Webber J, Gooneratne R, et al. Micredox: Application for rapid biotoxicity assessment. Analytica Chimica Acta, 2004, 522 (2): 197-205.

DOI: 10.1016/j.aca.2004.05.010

Google Scholar

[9] Jialing Wang, Shunpeng Li, Zheng Huang. Environmental Microbiology [M]. Beijing: Higter Education Press, (2004).

Google Scholar

[10] Xiaohui Wang, Jing Jin, Hongqiang Ren, et al. Hebei Journal of Industrial Science and Technology, 2007, 24 (1): 58262. In Chinese.

Google Scholar

[11] Tzoris A, Fernandez-Perez V, Hall E A H. Direct toxicity assessment with a mini portable respirometer. Sensors and Actuators B: Chemical, 2005, 105 (1): 39-49.

DOI: 10.1016/s0925-4005(04)00109-1

Google Scholar

[12] Liyuan Wang, Jiemei Sun, Linghui Zhou. Environmental Protection of Xinjiang, 2006, 28 (1): 25-27. In Chinese.

Google Scholar

[13] Li Ma, Jiansheng Cui, Xiaohui Wang, et al. Hebei Journal of Industrial Science & Technology, 2004, 21 (6): 50-55. In Chinese.

Google Scholar

[14] Kramer MP. Biosensors for measuring pesticides residues in the environment: past, present and present. Journal of AOAC International, 1996, 79 (6): 1245-1254.

DOI: 10.1093/jaoac/79.6.1245

Google Scholar

[15] Chee G.J., Ikebukuro K., Nomura Y., et al. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosensors and Bioelectronics, 2000, 15 (7): 371-376.

DOI: 10.1016/s0956-5663(00)00093-2

Google Scholar

[16] Sarmiza Elena Stanca, Ionel Catalin Popescu. Liviu Oniciu. Biosensors for phenol derivatives using biochemical signal amplification. Talanta, 2003, 61 (4): 501-507.

DOI: 10.1016/s0039-9140(03)00310-2

Google Scholar

[17] Yaohua Zhang, Xianmei Liu. Journal of Hebei Institute of Chemistry Technology and Light Industry, 1994, 15 (3): 46-49. In Chinese.

Google Scholar

[18] Hikuma M, Matsuoka H, Takeda M, et al. Microbial electrode for nitrate based on Pseudomonas Aeruginosa. Biotechnology Techniques, 1993, 7 (3): 231-236.

DOI: 10.1007/bf02566154

Google Scholar

[19] I Karube, Y Nomura and Y Arikawa. Biosensors for environmental control. Trends In Analytical Chemistry, 1995, 14 (7): 295-299.

DOI: 10.1016/0165-9936(95)97055-6

Google Scholar

[20] Mariela Martínez, Astrid Hilding-Ohlsson, Alberto A. VialeMembrane entrapped Sacch-aromyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. Journal of Biochemical and Biophysical Methods. 2007, 70 (3): 455-464.

DOI: 10.1016/j.jbbm.2006.11.001

Google Scholar

[21] Xianen Zhang, Xing Zhang. Chinese Journal of Biotechnology, 1989, 5: 140-145. In Chinese.

Google Scholar

[22] Surareungchai Werasak, et al. Abst Biosensors'90. 1990. 340.

Google Scholar

[23] Tkac J, Vostiar I, Gemeiner P, et al. Indirect evidence of direct electron communication between the active site of galactose oxidase and a graphite electrode. Bioelectrochemisry, 2002, 56 (122): 23-25.

DOI: 10.1016/s1567-5394(02)00043-9

Google Scholar

[24] Schmidt A., Bilitewski U. Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosensors and Bioelectronics, 1995, 11: 1139-1145.

DOI: 10.1016/0956-5663(96)82336-0

Google Scholar

[25] Rawson D.W., Willmer A.J., Turner A.P. Whole-cell biosensors for environmental monitoring. Biosensors, 1989, 4: 299-311.

DOI: 10.1016/0265-928x(89)80011-2

Google Scholar

[26] Zhang M, Li C. Fouling and natural organic matter removal in adsorbent membrane systems for drinking water treatment. Environmental Science and Technology, 2003, 37 (8): 1663-1669.

DOI: 10.1021/es0260418

Google Scholar

[27] Han Tae-Sung, KimYoon-Chang, Satishi Sasaki, et al. Anal. Chem. Acta, 2001, 431 (2): 22.

Google Scholar

[28] Shikha R, Anil K. Development and characterization of a novel immobilized microbial membranefor rapid determination of biochemical oxygen demand load inindusrial waste waters. Biosensors and Bioelectronics, 2003, 18: 23-29.

DOI: 10.1016/s0956-5663(02)00108-2

Google Scholar

[29] Dong Li. Construction Materials & Decoration, 2007, 7: 253-254.

Google Scholar

[30] Zhen Yan. The study of luminescent phosphoreum biosensors for seawater toxicity biomonitoring and rapid determining of pesticide residues on vegetables[D]. Xiamen University. (2002).

Google Scholar

[31] Shao C, Howe C, Porter A, et al. Novel cyanobacterial biosensor for detection of herbicides. Applied and Environmental Microbiology, 2002, 68 (10): 5026-5033.

DOI: 10.1128/aem.68.10.5026-5033.2002

Google Scholar

[32] Mirasoli M, Feliciano J, Michelini E, et al. Internal response correction for fluorescent whole-cell biosensors. Anal Chem, 2002, 74 (23): 5948-5953.

DOI: 10.1021/ac0259008

Google Scholar

[33] Christoph W, Marco C, Jan R. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Applied and Environmental Microbiology, 2004, 70 (1): 43-51.

DOI: 10.1128/aem.70.1.43-51.2004

Google Scholar

[34] Michael N, Lars H, Mike S, et al. Bacterium-based NO2- biosensor for environmental applications. Applied and Environmental Microbiology, 2004, 70 (11): 6551-6558.

Google Scholar

[35] Chunxiang Xu. The microbiosensor and its application [M]. Science and Technology Press, (1993).

Google Scholar

[36] Yingchun Liu, Xiangbin Ye. Principle and Application of Modern Novel Sensor [M]. National Defence Industry Press, 1998, 126-127.

Google Scholar

[37] Joseph W. Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 2001, 13 (12): 983-988.

DOI: 10.1002/1521-4109(200108)13:12<983::aid-elan983>3.0.co;2-#

Google Scholar