[1]
S.F. D' Souza. Review Microbial Biosensors. Biosensors and Bioelectronics, 2001, 16: 337-353.
Google Scholar
[2]
Junhui Zhai, Ruifu Yang. Letters in biotechnology, 2002, 13 (3). In Chinese.
Google Scholar
[3]
Pinghui Xie, Ying Liu, Yu Liu, et al. Journal of Transducer Technology, 2001, 20 (6): 4-7. In Chinese.
Google Scholar
[4]
Liping Ma, Bin Mao, Bin Liu, et al. Recent Application and Development Tendency of Biosensors, 2001, 20 (6): 4-7. In Chinese.
Google Scholar
[5]
Huaili Zheng, Yingkun Gong. Spectroscopy and Spectral Analysis, 2003, 23 (2): 411-413. In Chinese.
Google Scholar
[6]
M Campell. Sensor Systems for Environmental Monitoring. Sensor Technologies, 1997, 1: 237.
Google Scholar
[7]
Jianlong Wang, Yue Zhang, Hanchang Shi, et al. Biotechnology Information, 2000, 3: 13-18. In Chinese.
Google Scholar
[8]
Tizzard A, Webber J, Gooneratne R, et al. Micredox: Application for rapid biotoxicity assessment. Analytica Chimica Acta, 2004, 522 (2): 197-205.
DOI: 10.1016/j.aca.2004.05.010
Google Scholar
[9]
Jialing Wang, Shunpeng Li, Zheng Huang. Environmental Microbiology [M]. Beijing: Higter Education Press, (2004).
Google Scholar
[10]
Xiaohui Wang, Jing Jin, Hongqiang Ren, et al. Hebei Journal of Industrial Science and Technology, 2007, 24 (1): 58262. In Chinese.
Google Scholar
[11]
Tzoris A, Fernandez-Perez V, Hall E A H. Direct toxicity assessment with a mini portable respirometer. Sensors and Actuators B: Chemical, 2005, 105 (1): 39-49.
DOI: 10.1016/s0925-4005(04)00109-1
Google Scholar
[12]
Liyuan Wang, Jiemei Sun, Linghui Zhou. Environmental Protection of Xinjiang, 2006, 28 (1): 25-27. In Chinese.
Google Scholar
[13]
Li Ma, Jiansheng Cui, Xiaohui Wang, et al. Hebei Journal of Industrial Science & Technology, 2004, 21 (6): 50-55. In Chinese.
Google Scholar
[14]
Kramer MP. Biosensors for measuring pesticides residues in the environment: past, present and present. Journal of AOAC International, 1996, 79 (6): 1245-1254.
DOI: 10.1093/jaoac/79.6.1245
Google Scholar
[15]
Chee G.J., Ikebukuro K., Nomura Y., et al. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosensors and Bioelectronics, 2000, 15 (7): 371-376.
DOI: 10.1016/s0956-5663(00)00093-2
Google Scholar
[16]
Sarmiza Elena Stanca, Ionel Catalin Popescu. Liviu Oniciu. Biosensors for phenol derivatives using biochemical signal amplification. Talanta, 2003, 61 (4): 501-507.
DOI: 10.1016/s0039-9140(03)00310-2
Google Scholar
[17]
Yaohua Zhang, Xianmei Liu. Journal of Hebei Institute of Chemistry Technology and Light Industry, 1994, 15 (3): 46-49. In Chinese.
Google Scholar
[18]
Hikuma M, Matsuoka H, Takeda M, et al. Microbial electrode for nitrate based on Pseudomonas Aeruginosa. Biotechnology Techniques, 1993, 7 (3): 231-236.
DOI: 10.1007/bf02566154
Google Scholar
[19]
I Karube, Y Nomura and Y Arikawa. Biosensors for environmental control. Trends In Analytical Chemistry, 1995, 14 (7): 295-299.
DOI: 10.1016/0165-9936(95)97055-6
Google Scholar
[20]
Mariela Martínez, Astrid Hilding-Ohlsson, Alberto A. VialeMembrane entrapped Sacch-aromyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism. Journal of Biochemical and Biophysical Methods. 2007, 70 (3): 455-464.
DOI: 10.1016/j.jbbm.2006.11.001
Google Scholar
[21]
Xianen Zhang, Xing Zhang. Chinese Journal of Biotechnology, 1989, 5: 140-145. In Chinese.
Google Scholar
[22]
Surareungchai Werasak, et al. Abst Biosensors'90. 1990. 340.
Google Scholar
[23]
Tkac J, Vostiar I, Gemeiner P, et al. Indirect evidence of direct electron communication between the active site of galactose oxidase and a graphite electrode. Bioelectrochemisry, 2002, 56 (122): 23-25.
DOI: 10.1016/s1567-5394(02)00043-9
Google Scholar
[24]
Schmidt A., Bilitewski U. Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosensors and Bioelectronics, 1995, 11: 1139-1145.
DOI: 10.1016/0956-5663(96)82336-0
Google Scholar
[25]
Rawson D.W., Willmer A.J., Turner A.P. Whole-cell biosensors for environmental monitoring. Biosensors, 1989, 4: 299-311.
DOI: 10.1016/0265-928x(89)80011-2
Google Scholar
[26]
Zhang M, Li C. Fouling and natural organic matter removal in adsorbent membrane systems for drinking water treatment. Environmental Science and Technology, 2003, 37 (8): 1663-1669.
DOI: 10.1021/es0260418
Google Scholar
[27]
Han Tae-Sung, KimYoon-Chang, Satishi Sasaki, et al. Anal. Chem. Acta, 2001, 431 (2): 22.
Google Scholar
[28]
Shikha R, Anil K. Development and characterization of a novel immobilized microbial membranefor rapid determination of biochemical oxygen demand load inindusrial waste waters. Biosensors and Bioelectronics, 2003, 18: 23-29.
DOI: 10.1016/s0956-5663(02)00108-2
Google Scholar
[29]
Dong Li. Construction Materials & Decoration, 2007, 7: 253-254.
Google Scholar
[30]
Zhen Yan. The study of luminescent phosphoreum biosensors for seawater toxicity biomonitoring and rapid determining of pesticide residues on vegetables[D]. Xiamen University. (2002).
Google Scholar
[31]
Shao C, Howe C, Porter A, et al. Novel cyanobacterial biosensor for detection of herbicides. Applied and Environmental Microbiology, 2002, 68 (10): 5026-5033.
DOI: 10.1128/aem.68.10.5026-5033.2002
Google Scholar
[32]
Mirasoli M, Feliciano J, Michelini E, et al. Internal response correction for fluorescent whole-cell biosensors. Anal Chem, 2002, 74 (23): 5948-5953.
DOI: 10.1021/ac0259008
Google Scholar
[33]
Christoph W, Marco C, Jan R. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Applied and Environmental Microbiology, 2004, 70 (1): 43-51.
DOI: 10.1128/aem.70.1.43-51.2004
Google Scholar
[34]
Michael N, Lars H, Mike S, et al. Bacterium-based NO2- biosensor for environmental applications. Applied and Environmental Microbiology, 2004, 70 (11): 6551-6558.
Google Scholar
[35]
Chunxiang Xu. The microbiosensor and its application [M]. Science and Technology Press, (1993).
Google Scholar
[36]
Yingchun Liu, Xiangbin Ye. Principle and Application of Modern Novel Sensor [M]. National Defence Industry Press, 1998, 126-127.
Google Scholar
[37]
Joseph W. Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 2001, 13 (12): 983-988.
DOI: 10.1002/1521-4109(200108)13:12<983::aid-elan983>3.0.co;2-#
Google Scholar