Applications of Non-Thermal Plasma Technology in Methane Combustion

Article Preview

Abstract:

Applications of non-thermal plasma in methane catalysis combustion have attracted a lot of attentions in recent years due to its outstanding and unique properties. We summarized two kinds of hybrid systems of plasma and catalysts for methane combustion reaction and compared these two figurations. Results prove that combining non-thermal plasma and catalysts has an excellent performance for methane total oxidation compared with single ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2912-2916

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Zarur, J.Y. Ying, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature 403 (2000) 65-67.

DOI: 10.1038/47450

Google Scholar

[2] W.F. Libby, Promising Catalyst for Auto Exhaust, Science 171 (1971) 499-500.

DOI: 10.1126/science.171.3970.499

Google Scholar

[3] P. Gélin, M. Primet, Complete oxidation of methane at low temperature over noble metal based catalysts: a review, Appl. Catal. B-Environ. 39 (2002) 1-37.

DOI: 10.1016/s0926-3373(02)00076-0

Google Scholar

[4] J. Chen, W. Shi, X. Zhang, H. Arandiyan, D. Li, J. Li, Roles of Li(+) and Zr(4+) Cations in the Catalytic Performances of Co(1-x)M(x)Cr(2)O(4) (M = Li, Zr; x = 0-0. 2) for Methane Combustion, Environ. Sci. Technol. 45 (2011) 8491-8497.

DOI: 10.1021/es201659h

Google Scholar

[5] S. Royer, A. Van Neste, R. Davidson, S. McIntyre, S. Kaliaguine, Methane Oxidation over Nanocrystalline LaCo1-XFeXO3:  Resistance to SO2 Poisoning, Ind. Engi. Chem. Res. 43 (2004) 5670-5680.

DOI: 10.1021/ie030775r

Google Scholar

[6] A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D. Delimaris, W. Grzegorczyk, S. Pasieczna, Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane, J. Catal. 227 (2004) 282-296.

DOI: 10.1016/j.jcat.2004.07.022

Google Scholar

[7] Y.F. Wang, C.H. Tsai, W.Y. Chang, Y.M. Kuo, Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor, Int. J. Hydrogen Energ. 35 (2010) 135-140.

DOI: 10.1016/j.ijhydene.2009.10.088

Google Scholar

[8] W. Chu, L.N. Wang, P.A. Chernavskii, A.Y. Khodakov, Glow-Discharge Plasma-Assisted Design of Cobalt Catalysts for Fischer–Tropsch Synthesis, Ang. Chem. Int. Edit. 47 (2008) 5052-5055.

DOI: 10.1002/anie.200800657

Google Scholar

[9] J.L. Hueso, A.R. González-Elipe, J. Cotrino, A. Caballero, Removal of NO in NO/N2, NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2 Systems by Flowing Microwave Discharges, J. Phys. Chem. A. 111 (2007) 1057-1065.

DOI: 10.1016/j.carbon.2006.07.021

Google Scholar

[10] J.L. Hueso, A. Caballer, J. Cotrino, A.R. González-Elipe, Plasma catalysis over lanthanum substituted perovskites, Catal. Commun. 8 (2007) 1739-1742.

DOI: 10.1016/j.catcom.2007.02.001

Google Scholar

[11] R. Marques, S. Da Costa, P. Da Costa, Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition, Appl. Catal. B-Environ. 82 (2008) 50-57.

DOI: 10.1016/j.apcatb.2007.12.024

Google Scholar

[12] C. Liu, A. Marafee, R. Mallinson, L. Lobban, Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups, Appl. Catal. A-Gen. 164 (1997) 21-33.

DOI: 10.1016/s0926-860x(97)00154-3

Google Scholar

[13] Q. Wang, H. Shi, B. Yan, Y. Jin, Y. Cheng, Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor, Int. J. Hydrogen Energ. 36 (2011) 8301-8306.

DOI: 10.1016/j.ijhydene.2011.04.084

Google Scholar

[14] S. Specchia, E. Finocchio, G. Busca, P. Palmisano, V. Specchia, Surface chemistry and reactivity of ceria–zirconia-supported palladium oxide catalysts for natural gas combustion. J. Catal. 263 (2009) 134-145.

DOI: 10.1016/j.jcat.2009.02.002

Google Scholar

[15] M. Cargnello, J.J.D. Jaén, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gámez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science 337 (2012) 713-717.

DOI: 10.1126/science.1222887

Google Scholar

[16] A. Baylet, P. Marécot, D. Duprez, X. Jeandel, K. Lombaert, J.M. Tatibouët, Synergetic effect of plasma/catalysis hybrid system for CH4 removal, Appl. Catal. B-Environ. 113–114 (2012) 31-36.

DOI: 10.1016/j.apcatb.2011.10.026

Google Scholar

[17] H.L. Chen, H.M. Lee, S.H. Chen, M.B. Chang, S.J. Yu, S.N. Li, Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems: A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications, Environ. Sci. technol. 43 (2009).

DOI: 10.1021/es802679b

Google Scholar

[18] C.J. Liu, G.P. Vissokov, B.W.L. Jang, Catalyst preparation using plasma technologies, Catal. Today 72 (2002) 173-184.

DOI: 10.1016/s0920-5861(01)00491-6

Google Scholar